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We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in
a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for
four-wave interactions in the reduced case of a 2.5 + 1 diagonal metric tensor. In this limit, where only
plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the
asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for
the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse
cascade is characterized by a finite-time propagation of the metric excitations—a process similar to an
explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing
out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the
system. These processes might be important for understanding the early Universe where a background of
weak nonlinear gravitational waves is expected.
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We present the first direct numerical simulation of gravitational wave turbulence. General relativity
equations are solved numerically in a periodic box with a diagonal metric tensor depending on two space
coordinates only, g;; = g;i(x,y,7)8;;, and with an additional small-scale dissipative term. We limit
ourselves to weak gravitational waves and to a freely decaying turbulence. We find that an initial metric
excitation at intermediate wave number leads to a dual cascade of energy and wave action. When the direct
energy cascade reaches the dissipative scales, a transition is observed in the temporal evolution of energy
from a plateau to a power-law decay, while the inverse cascade front continues to propagate toward low
wave numbers. The wave number and frequency-wave-number spectra are found to be compatible with the
theory of weak wave turbulence and the characteristic timescale of the dual cascade is that expected for
four-wave resonant interactions. The simulation reveals that an initially weak gravitational wave turbulence
tends to become strong as the inverse cascade of wave action progresses with a selective amplification of

Introduction.—The recent direct observations of gravita-
tional waves (GWs) by the LIGO-Virgo collaboration [1], a
century after their prediction by Einstein [2], is certainly one
of the most important events in astronomy, which opens a
new window onto the Universe, the so-called GW astronomy.
In the modern Universe, shortly after being excited by a
source, e.g., a merger of two black holes, GWs become
essentially linear and therefore noninteracting during their
subsequent propagation. In the very early Universe, different
mechanisms have been proposed for the generation of
primordial GWs, like e.g., phase transition [3-9], self-
ordering scalar fields [10], cosmic strings [11], and cosmic
defects [12]. Production of GWs is also expected to have
taken place during the cosmological inflation era [13-15],
and many efforts are currently made to detect indirectly their
existence [16]. The physical origin of the exponential
expansion of the early Universe is, however, not clearly
explained and still under investigation [17,18]. Formally, it
was incorporated into the general relativity equations simply
through adding a positive cosmological constant.

The primordial GW's were, presumably, significantly more
nonlinear than the GWs in the modern Universe (like the
GWs observed recently by LIGO-Virgo) as they had much
larger energy packed in a much tighter space [19]. Although
not firmly validated, a scenario was suggested in which a
first-order phase transition proceeds through the collisions of
true-vacuum bubbles creating a potent source of GWs
[20-22]. According to this scenario, at the time of the grand-
unified-theory (GUT) symmetry breaking (z, ~ 10~ sec,
T, ~ 10" GeV), the ratio of the energy density in GW (pgw)
to that in radiation (p,,4) after the transition is about 5% [21].
From the expressions given in [21] and using as a time scale
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t, (and also g, ~ 100), we find the following estimate for the
GW amplitude: h ~0.3. Supposedly, such waves were
covering the Universe quasiuniformly rather than being
concentrated locally in space and time near an isolated burst
event, and it is likely that their distribution was broad in
frequencies and propagation angles. At some stage of
expansion of the Universe, the GWs had become rather
weak, but still nonlinear enough for having nontrivial mutual
interactions. Importance of the nonlinear nature of the GWs
was pointed out in the past for explaining, e.g., the memory
effect [23] or part of the dark energy [24]. The possibility to
get a turbulent energy cascade of the primordial gravitons
was also mentioned [25,26], but, to date, no theory has been
developed. A turbulence theory seems to be particularly
relevant for GWs because they are nonlinear, and their
dissipation is negligible. Recent works [27,28] explore some
ideas on similar lines: they investigate numerically the
turbulent nature of black holes, define a gravitational
Reynolds number, and show that the system can display a
nonlinear parametric instability with transfers reminiscent of
an inverse cascade (see also Refs. [29,30]).

The nonlinear properties of the GWs, especially the
primordial GWs mentioned above, call for using the wave
turbulence approach considering statistical behavior of
random weakly nonlinear waves [31,32]. The energy transfer
between such waves occurs mostly within resonant sets of
waves, and the resulting energy distribution, far from a
thermodynamic equilibrium, is often characterized by exact
power law solutions similar to the Kolmogorov spectrum of
hydrodynamic turbulence—the so-called Kolmogorov—
Zakharov (KZ) spectra [31,32]. The wave turbulence
approach has been successfully applied to many diverse
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the fluctuations g;; and g,.
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Introduction.—Wave turbulence (WT) is a state of a
continuous medium with random mutually interacting waves
of weak amplitude excited over a broad range of wave
numbers. The long-time statistical properties of such a
medium have a natural asymptotic closure induced by the
large separation of linear and nonlinear timescales [1-3]. The
dynamics of WT is driven by kinetic equations which
describe the redistribution of spectral densities via mainly
three- or four-wave resonant interactions. The kinetic equa-
tions have two types of exact stationary power-law solutions:
the zero-flux equilibrium thermodynamic spectra and the
finite flux nonequilibrium Kolmogorov-Zakharov spectra
[4]. The latter solutions are much more interesting because
they describe the spectral transfer of conserved quantities,
such as energy or wave action, generally between a source
and a sink [5,6]. The direction of the cascade, direct or
inverse, can be found by a numerical evaluation of the sign of
the associated flux. The theory also offers the possibility to
predict the Kolmogorov constant. All these properties makes
WT a very interesting regime to understand the mechanisms
underlying turbulence in depth.

WT is of interest to many physical systems for which
theoretical predictions have been made and numerically or
experimentally verified. We have, among others, capillary
waves [7-14] and gravity waves [15-18] on fluid surfaces,
inertial waves in rotating hydrodynamics [19-26], elastic
waves on thin vibrating plates [27-32], optical waves in
optical fibers [33,34], waves in Bose-Einstein condensate
[35,36], Kelvin waves on quantum vortex filaments [37-39],
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magnetostrophic waves in geodynamo [40,41] and magneto-
hydrodynamic waves in space plasmas [42-47]. Recently, a
theory of WT has been developed for gravitational waves
(GWs) [48], a few years after their first direct detection [49].
A promising application concerns the primordial universe
shortly after the hypothetical initial singularity. During this
period, GWs can be produced by different mechanisms like,
e.g., first order phase transition [50,51] or the merger of
primary black holes which can be formed from the primor-
dial space-time fluctuations [52]. A typical length scale of
GW excitation can be 10~ m. Following this idea, a
scenario of cosmological inflation has been proposed relying
on the presence of weak or strong GW turbulence and rapid
formation of a condensate via an inverse cascade [53]. In this
scenario, the initial strong GW bursts are quickly diluted as
they propagate through the surrounding space, resulting in a
statistically quasihomogeneous GW field that is weakly or
strongly nonlinear depending on the strength and density of
forcing events. For the weak WT case, a kinetic equation that
describes the dynamics of energy and wave action via four-
wave resonant interactions was derived. It has exact sta-
tionary scaling solutions for the one-dimensional (1D)
isotropic spectrum of wave action: k! for the direct energy
cascade and k=%/3 for the inverse wave action cascade.
Further, an explosive front propagation in the inverse
cascade is predicted and numerically observed with a
phenomenological nonlinear diffusion model where strongly
local interactions are retained [54]. With this model, it is also
shown that the nonstationary isotropic spectrum of wave

© 2021 American Physical Society



Einstein’s equations

10 nonlinear partial differential eqUations
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Gravitational waves (GW) A=0
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Weak wave turbulence theory

Statistical description for weakly non-linear waves

Analytical theory 1n spectral space

Natural asymptotical closure of the hierarchy of moment equations

The kinetic equations admits exact stationary finite flux solutions

Finite flux spectra not valid over all k's — strong wave turbulence

Experiments and DNS show some limitations in the predictions



Weakly nonlinear general relativity A=0

g,LW — ’]7“1/ + h/“/, WheI‘e h/“/ << ]. RﬂV — O

1
R, = R,) + R} + RA+RE +— R()=—-0h,

Triadic interactions: |k = k; + ko and wx = wy, + wy,
WKk = C|k| — Ck

= Collinear wave vectors

We found no contribution on the resonant manifold

Three-wave interactions in GW turbulence does not contribute!



Weakly nonlinear general relativity A=0

: : : . 1 is the determinant of
Einstein-Hilbert action: S = 5 / RV —gd*x & Epv

R is the scalar curvature

Diagonal space-time metric:
0/0z=0

Valid for any GW amplitude but we will limit ourselves to weak amplitude

Lagrangian density:
Give the linear, contribution
1 6‘5 2 QY 2 5'7 y O‘ﬁ (0z0r)(0z7) (0yB)(0y)
= L=—|—X\ — — (0 Oy A +
R A O B o

a=F0=v=1 AK1 A = c1 exp(—iwkt + ik - X) + c2 exp(iwkt + ik - x)




Hadad & Zakharov’s theorem (JGP, 2014)

Valid for any gravitational wave amplitude

* Dynamical equations given by: | S .
4 aH SIVER DY S1 0 4 equations
188 _ 8 _ 88 _ g
o — 8B — Sy
* Vacuum Einstein equations: Roo Ro1 Roz
. _ — Ry Ry
7 equations Ruwl=1 R 0]
— — — Rs3

It’s compatible !



General relativity equations for GW turbulence

a, B, 7, <1

0yt = —2A(0,4), 0,8 =—2(0,4) 8.0,7 = —2(0,A)(8,4)

O[(1+a+pB—7)A =0.[(1+a—B+7)0, A +0,[(1—a+p+7)0,

goo = —(1 +7)%e
g1 = (1+ p)re
g =(1 + @)™

g3z = e




Hamiltonian formalism

] ax + a*_k . \/E(ak - a*_k) .
Normal variables: Jx=—"—"X = ,
T K i (Fourier space)
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Oay;,
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k

Hamiltonian equation: iax =
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Kinetic equation (4-wave interactions)

_ 2
ng = (lax|") Hs .1 =0 — Additional symmetry

1 1 1 T
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Constant (non-zero) flux (isotropic) spectra:

Energy Wave action
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(D) _1/31.0 (1D) _ 1/3;.—2/3| finite
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Phenomenology of GW turbulence

Kinetic equation:  Qyny :%4_ 64() 4o €= TTGTVZ <<1
1 ™~ \° Tow ~ 1/w
—> Tcascade ™ ATGW ™ (E) TNL TN ~ f/hc
wx = clk| = ck
: ¢t h?
Energy density: E ~ bl wN

1D energy and wave action spectra:

E E B3
£ ~ > ~ —~ = ~EB = ‘EkNgl/B‘
TNL (ﬁ) w3 k
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Super-local approximation: nonlinear diffusion model

e Rigorous derivation is rare (in MHD it’s possible)

* Here, it’s a phenomenological model
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Anomalous scaling
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Anomalous scaling
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The first direct numerical simulation of GW turbulence

- Pseudo-spectral code (FFTW3), periodic conditions, de-aliasing
- Adams-Bashforth (explicit; order 2) numerical scheme
- No forcing (decaying turbulence); additional dissipation
. . _Vk4/1k (fOI‘ k > kdiss)
- Initial condition: k., << k; << K2y

- Resolutions 5122

0,6 = —24(0,4), 8,8 =—-21(0,) 0.0, = —2(0:4)(,)

O (1+a+p—7)A = 0x[(1 +@—B+7)04 +8,[(1 —a+p +7)9,4]

+ intermediate variables: A = 0,4 A =0,a, B = a,ﬁ, and G = 0,y

Joo = —(1 + }7)23_2/1 922 :(1 + &)26_2/1

. a, .7, A< 1

gu=1+p2e? gpz=e




Illustration with an excitation at low k




Be careful with the initial condition !

It could be a black hole...




Direct evidence of a dual cascade

E(t)/E(0)

T 17 T ] | | | Time scale compatible with
Energy decay 4-wave interactions Tty ~ TGW/64

Weak wave turbulence
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Space-time metric

Time evolution of the metric component g,
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Conclusion

Turbulence in general relativity exists (4-wave interactions)
» GW turbulence is characterized by a dual cascade
» Explosive inverse cascade of wave action / anomalous scaling

» Strong GW turbulence is expected at large scale



Beyond weak wave turbulence



k0.65 17N(k)

From weak to strong GW turbulence

Phenomenological model of
strong GW turbulence

Weak GW turbulence

Explosive inverse cascade
+ anomalous scaling
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Presence of inhomogeneities

The Cosmic Microwave Background (CMB) is homogeneous

2001-2010
-

-

T=2.72548 + 0.00057 K

Homogeneous
up to 1/10 000

COBE WMAP

Planck

Inhomogeneities are necessary to explain the structures in the universe

Planck

#####




Comparison with observations
k1 Evolutlon from inflation

h(k)[2 4

Expansion leads

to dilution
fossil spectrum
for the CMB

k
Small fluctuations are treated in the Newtonian limit: V¢ = 47G)p
¢ty 2 ne—2 =
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(k) = (k) ~ (k) k2 ~ k-~ Harrison-Zeldovich spectrum (ng=1) Latest data

Planck (T) + lowP
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Conclusion and (exciting) perspectives

Turbulence in general relativity exists (4-wave interactions)
» GW turbulence is characterized by a dual cascade
» Explosive inverse cascade of wave action / anomalous scaling

» Strong GW turbulence is expected at large scale

Towards a paradigm shift for the theory of cosmological inflation ?
** Phenomenological (critical balance) model of inflation (t = 10-3¢s)
¢ Fossil spectrum compatible with CMB (Planck satellite data)

¢ Falsifiable predictions with DNS (no tuning parameter)

o Problem close to elastic wave turbulence

» The Riemann (4" order) curvature tensor and the Kretschmann scalar are non
trivial



