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 Introduction

Magnetic Reconnection



Magnetic reconnection: basic concepts
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large-scale  
plasma flow and/or shears



Magnetic reconnection: basic concepts

Magnetic-field reversal

current sheet
(current sheets = regions with strong magnetic-field shear)
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if the magnetic shear is “strong enough(*)” 
⇒ RECONNECTION! 

(➭ conversion of magnetic energy into plasma kinetic energy)

(*) there is a parameter called Δ’ … but this would require an entire lecture!  
☞ ask Camille Granier and Emanuele Tassi, they know everything about it!
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if the magnetic shear is “strong enough(*)” 
⇒ RECONNECTION! 

(➭ conversion of magnetic energy into plasma kinetic energy)
☞ magnetic reconnection requires to break magnetic-flux conservation:  

this is done only by non-ideal MHD effects (non-negligible at “small” scales!)

1. generalized Ohm’s law:

2. Faraday’s law:

R = 0 in ideal MHD

⇒
∂Σ(t)

∂Σ(t+dt) Σ



Magnetic reconnection: basic concepts

Magnetic-field reversal

(*) there is a parameter called Δ’ … but this would require an entire lecture!  
☞ ask Camille Granier or Emanuele Tassi, they know everything about it!

“PLASMOID” regime with recursive/fractal reconnection 
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if the magnetic shear is “strong enough(*)” 
⇒ RECONNECTION! 

(➭ conversion of magnetic energy into plasma kinetic energy)

☞ plasma turbulence: 

1. naturally develops current sheets 
2. naturally generates small scales (eventually “activating” non-ideal MHD effects)
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Alfvénic Turbulence



Alfvénic Turbulence

hydrodynamic turbulence (B = 0)

[Goto, PTPS 2012]

MHD turbulence (B ≠ 0)

B0

[Sisti et al., A&A 2021]

☞ Immediate visual difference: anisotropy of structures
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Alfvénic Turbulence

Alfvén waves traveling “up” or “down” the magnetic field B

The MHD equations in the Elsässer formulation

non-linear interaction only between 
counter-propagating Alfvén waves

Alfvénic turbulence ~ interaction of counter-propagating AWs
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Alfvénic Turbulence

Split background and fluctuations:

⇒

⇒ non-linearity parameter:
<< 1  (“WEAK”)

~ 1  (“STRONG”)



Phenomenology of Alfvénic Turbulence

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum 

 

☞ for a formal derivation, see, e.g.,  

[Ng & Bhattacharjee, PoP 1996] 
[Galtier, Nazarenko, Newell, Pouquet, JPP 2000] 

[Schekochihin, arXiv:2010.00699] 
 

(because, yes, it’s the last talk on Friday and we all want to go to lunch!)
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⇒   no parallel cascade (k// = cst.), only a cascade in k⟘ !

How many interactions are needed to produce a significant change in counter-propagating Alfvén-wave packets? 
(i.e., Δ(δz)/δz ~ 1)

crossing time ~ linear propagation time:

distortion time ~ non-linear time:
⇒ (change during 

one collision)

⇒ assume changes accumulates 

as a random walk:
⇒ CASCADE  

TIME

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum
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Phenomenology of Alfvénic Turbulence

☞ fluctuations’ scaling and energy spectum 

from constant energy flux through scales:

⚠  A very important consequece of these scalings is that an initially weak Alfvénic cascade will not remain weak!

non-linear frequency increases with decreasing scales,  
while linear frequency is constant because there is no parallel cascade:

⇒

transition to critical balance (χ ~ 1)

⇒

weak Alfvénic turbulence: a quick phenomenological derivation of the spectrum



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation 

 

☞ for furhter details, see, e.g.,  

[Goldreich & Sridhar, ApJ 1995] 
[Oughton & Matthaeus, ApJ 2020] 
[Schekochihin, arXiv:2010.00699] 

 
(same reason as before)
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☞ At this point, linear, non-linear, and cascade timescales match each other:

the information about Alfvénic fluctuations decorrelating in the perpendicular 

plane over an eddy turn-over time τnl can only propagate along the field for a 
length l|| at maximum speed vA.  
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Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

B

the information about Alfvénic fluctuations decorrelating in the perpendicular 

plane over an eddy turn-over time τnl can only propagate along the field for a 
length l|| at maximum speed vA.  

 
“So… CB is essentially AWs trying to keep up with the turbulent eddies…”

Therefore, once τnl ~ τA is reached, the balance is mantained.  

(In principle, this could be done by continuing the cascade with τnl = const., or 

by generating smaller l|| such that τA ~ l||/vA ~ τnl keeps holding… it is the latter)

you can see the ``critical-balance condition’’ as the result of causality:

☞ At this point, linear, non-linear, and cascade timescales match each other:



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

B

☞ At this point, linear, non-linear, and cascade timescales match each other:



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation
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☞ At this point, linear, non-linear, and cascade timescales match each other:

☞ fluctuations’ scaling + spectum from ε = const. (you know the drill):



Phenomenology of Alfvénic Turbulence

critically balanced (strong) Alfvénic turbulence: a quick phenomenological derivation

B

☞ now, you can also compute the fluctuations’ wavenumber anisotropy:

☞ At this point, linear, non-linear, and cascade timescales match each other:

☞ fluctuations’ scaling + spectum from ε = const. (you know the drill):
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Further Developments in Theoretical Models

dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

☞ Observations and simulations show that δvλ and δbλ have a spontaneous tendency to 

align in the plane perpendicular to the local mean field <B>λ, within an angle θλ  
 

(e.g., Podesta et al., JGR 2009; Hnat et al., PRE 2011; Mason et al., ApJ 2011;  

Wicks et al., PRL 2013; Mallet et al., MNRAS 2016; …)

[Boldyrev, PRL 2006]

⚠ the alignment between δvλ and δbλ 
is not the same as the alignment 

between δz+λ and δz-λ!
(but they are related: see Schekochihin arXiv:2010.00699) [Wicks et al., PRL 2013]

alignment  ⇒  depletion of non-linearities:

⚠ but remember that fluctuations cannot be perfectly aligned (θλ = 0) in order to have a non-linear cascade



Further Developments in Theoretical Models

dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

The effect of alignment is not only to make the non-linear interactions weaker, 
but also to induce anisotropy in the plane perpendicular to the magnetic field B
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dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy

☞ At this point one has three-dimensional anisotropy of the fluctuations!
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Further Developments in Theoretical Models

dynamic alignment in Alfvénic turbulence: three-dimensional anisotropy
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(see Boldyrev, PRL 2006 for the derivation)
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☞ At this point one has three-dimensional anisotropy of the fluctuations!

The effect of alignment is not only to make the non-linear interactions weaker, 
but also to induce anisotropy in the plane perpendicular to the magnetic field B



Recent Developments in Theoretical Models

reconnection-mediated regime in Alfvénic turbulence 

 

☞ for furhter details, see, e.g.,  

[Boldyrev & Loureiro, ApJ 2017] 
[Mallet, Schekochihin, Chandran, MNRAS 2017] 

[Schekochihin, arXiv:2010.00699] 
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reconnection-mediated regime in Alfvénic turbulence

So, we had three-dimensional anisotropy, right? … wait a minute!  
doesn’t 3D anisotropy of the turbulent eddies look line a current sheet in the plane perpendicular to B?!  

(YES, IT DOES!)
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ξ

☞ if the eddies at a scale live “long enough” for the 

tearing instability (i.e., reconnection) to grow, then we 
can imagine that this process will be responsible for the 

production of small-scale magnetic fluctations
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So, we had three-dimensional anisotropy, right? … wait a minute!  
doesn’t 3D anisotropy of the turbulent eddies look line a current sheet in the plane perpendicular to B?!  
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reconnection-mediated regime in Alfvénic turbulence

So, we had three-dimensional anisotropy, right? … wait a minute!  
doesn’t 3D anisotropy of the turbulent eddies look line a current sheet in the plane perpendicular to B?!  
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⚠ this regime exists if the Lundquist number is 
large enough to separate such transition scale 

from the actual dissipation scale! 
(see references at the beginning of this part)[L
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reconnection-mediated regime in Alfvénic turbulence

So, we had three-dimensional anisotropy, right? … wait a minute!  
doesn’t 3D anisotropy of the turbulent eddies look line a current sheet in the plane perpendicular to B?!  
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☞ reconnection now defines the cascade time:

⇒

spectrum of  
reconnection-mediated turbulence
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Recent Developments in Theoretical Models
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dissipation  
scales

Is this the end of the story?!  
 

Of course not! … we have totally neglected KINETIC EFFECTS…

☞ reconnection-mediated turbulence with kinetic effects (theory & simulations):  

[Loureiro & Boldyrev, ApJ 2017] 

[Mallet, Schekochihin, Chandran, JPP 2017] 

(*)[Cerri & Califano, NJP 2017] 

[Franci, Cerri, et al., ApJL 2017]
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(*) Actually this was the first suggestion of the 

existence of a reconnection-mediated regime: from 

a kinetic simulation, before any theory existed!
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☞ so far, the only evidence of reconnection-mediated turbulence in MHD

•only in 2D geometry  

•requires extremely large Lundquist numbers (grid: 640002 !!!)
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Can we do better, and can it be done in 3D?

YES! 
just go back to a basic 3D setup: start from the building blocks of the Alfvénic cascade!

Simulations performed with the Hamiltonian 2-fields gyro-fluid model/code by Passot, Tassi, Sulem, and Laveder 

☞ model retains only Alfvén & kinetic-Alfvén modes, assumes strong anisotropy ( k|| << k⊥ ), …

B0

6723 grid

[Cerri, Passot, Laveder, Sulem, Kunz, ApJL (to be submitted)]
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just go back to a basic 3D setup: start from the building blocks of the Alfvénic cascade!

[Cerri, Passot, Laveder, Sulem, Kunz, ApJL (to be submitted)]

But we do it “WISELY”, i.e., with a “trick”:

Usually, one tries to increase 𝜸rec by achieving large S: requires extreme resolution!



Recent Developments via Numerical Simulations

Can we do better, and can it be done in 3D?

YES! 
just go back to a basic 3D setup: start from the building blocks of the Alfvénic cascade!

[Cerri, Passot, Laveder, Sulem, Kunz, ApJL (to be submitted)]

But we do it “WISELY”, i.e., with a “trick”:

Let’s increase the non-linear time instead! (by considering a smaller non-linear parameter, χ < 1)
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δb⊥ |z=L/2 / B0  (χ0 ~ 0.1) δb⊥ |z=L/2 / B0  (χ0 ~ 0.5)
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δb⊥ / B0  (χ0 ~ 0.1)



Recent Developments via Numerical Simulations
[Cerri, Passot, Laveder, Sulem, Kunz, ApJL (to be submitted)]
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reconnection-mediated 
regime obtained even before 
a large-scale turbulence state 

is generated (just from 
reconnection of current sheet 
generated by AWs shearing 

each other)

First 
proof in

 3D!!!  

(from reduced-MHD)



Take home message(s)

Thank you for your attention!

☞ The fate of weak MHD turbulence is to become strong…  

         …but which type of strong MHD turbulence? 
 
☞ A new turbulence regime exists, mediated by magnetic reconnection 

         …emergence of reconnection-mediated turbulence depends both on the Lundquist 
number and/or on the strength of the nonlinearities 
 
☞ We have now provided a proof via 3D simulations (from a first-principle setup) 

 
☞ BUT: there are still a lot of open questions… we need smart(er than me) people!


