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Turbulence at Large Scales AT

Polarized vortex bundles and K41 Navier-Stokes
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* Polarization of quantum vortex lines into bundles
mimic vortex tubes of classical turbulence

* Polarization can be induced from large-scale mixing
or from normal fluid at finite-temperature

- Similar Richardson cascade scenario of cascading
vortex bundles

« Observation of Kolmogorov energy spectrum Leveque, She, (1993)
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Quantum vortex reconnections

 The classical-quantum vortex bundle analogy breaks
down at scales near or below the inter-vortex scale /¢

- Quantum vortex reconnections become important for
the redistribution of energy
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Turbulence at the Intervortex Scale  aconunersiy

Quantum vortex reconnections

 The classical-quantum vortex bundle analogy breaks
down at scales near or below the inter-vortex scale /¢

- Quantum vortex reconnections become important for
the redistribution of energy

Mechanisms of energy transport

1. Vortex ring emission

* Rings emitted from reconnection region, directly
transferring energy through tangle

2. Direct sound emission

* Phonon emission at reconnection point

3. Generation of Kelvin waves

* Energy and momentum transferred to helical

Kelvin waves that propagate along individual
quantized vortex lines




Quantum Vortex Ring Emission Aston University

Vortex ring cascade at large angles

A vortex reconnection of two (almost) anti-parallel
vortices lead to a series of self-reconnections and
the emission of multiple vortex rings

- Critical angle for ring generation in the Biot-Savart
model is 8, ~ 0.9427

Kursa et al. Phys. Rev. B, 83, 014515, (2011)
Kerr, Phys. Rev. Lett. 106, 224501, (2011)
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« Suppression of large angle reconnections in polarized

tangles

» Majority of reconnections will not lead to cascade

Kursa et al. Phys. Rev. B, 83, 014515, (2011)
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model is 8, ~ 0.9427

Reconnection angles in QT tangles

« Suppression of large angle reconnections in polarized
tangles

» Majority of reconnections will not lead to cascade
4% (Counterflow), 2% (Vinen), 1% (Polarized)

Modulational instability and self-reconnection

Kursa et al. Phys. Rev. B, 83, 014515, (2011)
Kerr, Phys. Rev. Lett. 106, 224501, (2011)

Vinen —&—
Counterflow —e—
Polarized

« Strongly nonlinear Kelvin waves can lead to
modulational instability and self reconnections
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Salman, Phys. Rev. Lett. 111, 165301, (2013)
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The KGIVin Wave Cascade Aston University

Isotropic homogeneous small-scale QT
* Polarization inhibits ring emission

» Vortex reconnections transfer large-scale energy to
Kelvin waves at superfluid cross-over region

* Possible thermalisation at the intervortex scale

- Weakly nonlinear Kelvin wave interactions transfer
energy to even smaller scales
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The Kelvin Wave Cascade

Isotropic homogeneous small-scale QT
* Polarization inhibits ring emission

» Vortex reconnections transfer large-scale energy to

Kelvin waves at superfluid cross-over region
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the weakly nonlinear interaction of an ensemble of waves
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The KGIVin Wave Cascade Aston University

Isotropic homogeneous small-scale QT

Energy in

- Polarization inhibits ring emission /
» Vortex reconnections transfer large-scale energy to G Q G
Kelvin waves at superfluid cross-over region
P J Richardson G O O O O
. . L . d
Possible thermalisation at the intervortex scale cascade 000000000
- Weakly nonlinear Kelvin wave interactions transfer 000000000000
energy to even smaller scales T g
- : Q
Wave turbulence description of Kelvin-wave cascade l s
o)
 Theory for the non-equilibrium statistical description of >
the weakly nonlinear interaction of an ensemble of waves ‘fm
_ _ Kelvin-wave T
Main theoretical results cascade -V‘fVu‘v‘bv\‘J\‘

1. Nonlinear kinetic wave equation i v

.Hll‘!;IHxA

2. Steady-state power-law spectra for constant flux transfer of invariants zz‘fm@

3. But can easily study nonlinear evolution of higher-order moments and
amplitude PDFs
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Biot-Savart Hamiltonian description
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Biot-Savart Hamiltonian description
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X dr
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straight vortex line configuration periodic in z
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Biot-Savart Hamiltonian description

K r —s r=y=0
S = — 7 X dr y
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- Consider deviations s = [z(z,1),y(z,1), 2(t)] around \IB
straight vortex line configuration periodic in z |
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Biot-Savart Hamiltonian description

K r —s
X dr

§= — -
47 L ‘r — S|
- Consider deviations s = [z(z,1),y(z,1), 2(t)] around
straight vortex line configuration periodic in z

a(z,t) = a(zt) +iy(zt) 2% = O
ot  oda*

Aston University
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Biot-Savart Hamiltonian description

. K r —S Xd
S — — r
47'(' ,C‘I'—S|3 ~

|
- Consider deviations s = [z(z,1),y(z,1), 2(t)] around \l\
| _—

<

straight vortex line configuration periodic in z

) : 5’a 57‘[

a(z,t) = x(z,t) + iy(z,

1 4+ Rela™(2z1)a’ (22

|
47‘(‘ / \/ ; ledZQ <
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Biot-Savart Hamiltonian description

K r —S rEv=0

S = — 7 X dr y

4m L ‘I‘ — S| -~ i
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Biot-Savart Hamiltonian description

K r —S r=y=0

S = — 7 X dr y
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Biot-Savart Hamiltonian description

K r —S rEv=0
S = — 7 X dr y
4m L ‘I‘ — S| -~ i
- Consider deviations s = |z(z,1),y(2,t), 2(t)] around
straight vortex line configuration periodic in z | —
~da O «
a(z,t) = x(z,1) + iy(z, ) IK— = ~
ot oa* < s = [#(),4(2), 2]

1 4+ Rela"™"(z1)a’(z2)]

/ ledZQ < |

47T 2

\/ (z1 — 22) —|— a(z1) — a(z2)] \l\
Truncation and weak nonlinear expansion l z

- Regularization of integral by introducing cut-off £ < |22 — 21|

- Expand Hamiltonian in powers of the canonical variable:

_ la(z1) —a(z2)|
21 — 22|
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Hamiltonian-Fourier Representation  asonuniersiy

Wave action representation of the Hamiltonian

- Introduce wave action variables a(z,t) = ™"/ ) " ax(t) exp(i k 2)

k
]‘ koook 3k
H = Zwkakak —|— = Z T 4 a1a2a5a; 5;2 36 Z W4152§ a1G2030, 0z Qg 5}?’3
1 ,2,3,4 1,2,3,4,5,6
a1 = ay, (t) Ty; = T(ki, ko, ks, ky) 0371 = 6 (k1 + ko — k3 — ky)
Interaction coefficients
A s 5
ok =222 T nkly),  A=1n (zeﬁ/g) > 1, £=¢erts
4 4
A 1
T2 —_ 2 ) koksk [5k koksk fﬂ
3.4 T S T 1KoK3Ky + /3y
W, :%k1k2k3k4k5k6 / [7k1k2k3k4k5k6 + gjg’g}
7 STK 32TK 7

- Separate Iogarithm divergent terms by introducing an effective length scale /. g

1,2
. ]:3”4 and 94 ° are terms containing logarithmic contrlbutlons




Leading Order Integrability ston Universiy

Local Induction Approximation (LIA)

- If the cutoff is small then terms proportional to A give
greatest contribution and diverge in the limit & — 0

- Keeping only the leading divergent terms, then the
Hamiltonian becomes

K,QA 2
H o /\/ + |a/(2)]” dz

- Shown to be equivalent to the Local Induction Approximation (LIA)

l

| Svistunov, Phys. Rev. B, 52, 3647, (1995

* LIA implies only neighbouring vortex elements determine evolution and corresponds
to integrable dynamics

- Subleading in A (non-LIA) terms are essential for turbulent Kelvin-wave interactions
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Local Induction Approximation (LIA)

- If the cutoff is small then terms proportional to A give
greatest contribution and diverge in the limit & — 0

- Keeping only the leading divergent terms, then the
Hamiltonian becomes

K,QA 2
H o /\/ + |a’(2)|” dz

- Shown to be equivalent to the Local Induction Approximation (LIA)

l

| Svistunov, Phys. Rev. B, 52, 3647, (1995

* LIA implies only neighbouring vortex elements determine evolution and corresponds
to integrable dynamics

- Subleading in A (non-LIA) terms are essential for turbulent Kelvin-wave interactions

Double expansion in nonlinearity € < 1 and divergence A~! <« 1
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Wave resonance
» Waves only transfer energy and momentum to each other when in resonance

* In principle, only need to expand Hamiltonian up to first nonlinear term: H = Ho + H,4
Mode evolution equation
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Four-wave resonance condition

 This means that there are
essentially two delta functions:
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Wave resonance
» Waves only transfer energy and momentum to each other when in resonance

* In principle, only need to expand Hamiltonian up to first nonlinear term: H = Ho + H,4
Mode evolution equation
,ﬁak 57’[ 1 1.2 1.9
11— = - = Wik + = Z T3 K a1a2a§ 53’1{
ot oay 2 ’ )
1,2,3
» Change variable into rotating coordinate frame by = ay exp (i wi t)

b |
k— 5 D0 Tk bibab oy exp (—iwyt)

1,2,3
- Main nonlinear contribution when frequencies cancel: w

Four-wave resonance condition Momentum conservation

- This means that there are ki +ky =ks +k
essentially two delta functions: W1 T Wo = W3 + Wk

2
k:w1+w2—w3—wk:()

OO}—\

Energy conservation
- Only trivial resonances can solve resonance condition for Kelvin-wave frequency

k1 — kg, k2 — k, or k1 — k, k2 — k3



Six-Wave Interactions A




Six-Wave Interactions A

Canonical transformation



Six-Wave Interactions A

Canonical transformation
- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics




Six-Wave Interactions A

Canonical transformation
- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear



Six-Wave Interactions A

Canonical transformation
- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear

- Through the transformation, quartic interactions re-appear as sextic He contributions



Six-Wave Interactions A

Canonical transformation
- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear

- Through the transformation, quartic interactions re-appear as sextic He contributions

X 3



Six-Wave Interactions A

Canonical transformation
- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear

- Through the transformation, quartic interactions re-appear as sextic He contributions

)§f<+

Six-wave interaction coefficient of Hg

TA o TA T o TA
W=why W' 4
W W




Six-Wave Interactions A

Canonical transformation
- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear

- Through the transformation, quartic interactions re-appear as sextic He contributions

)§f<+

Six-wave interaction coefficient of Hg

- TA o TA T! o TA
W=why W' 4
‘ W ’ W
=0

Divergent terms that
correspond to LIA cancel



Six-Wave Interactions A

Canonical transformation
- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

» A classical canonical transformation ax — Ck can be used to express Hamiltonian in
new variables so non-resonant 4-wave terms do no appear

- Through the transformation, quartic interactions re-appear as sextic He contributions

)§f<+

Six-wave interaction coefficient of Hg

TA o TA T o TA
W=why W' 4

=0 # 0
Divergent terms that Leading order terms describing
correspond to LIA cancel Kelvin-wave dynamics
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- Of particular interest is the second order correlator function (axay,) = nkd(k — k1)
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Kolmogorov-Zakharov power-law solutions
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Wave action density

- Of particular interest is the second order correlator function (axay,) = nkd(k — k1)

 Wave energy density IS related to the wave action by Ey = wyink

3711{ o 1,2,3 1,2,3 5 1,2,3
Wy 5, k 0, 5k 0\ Wy | M1N2T3T4TI5 Tk
1 1 1
X | | dk1 dkg dk3 dk4 dk5
Nk 35 Ne ni T2 ns

- One solution corresponds to constant energy transfer to small scales by Kelvin-waves

E, =Crs As™2/2k~7/5  Kozik-Svistunov Energy Spectrum

Locality

- With any KZ solutions, convergence of the collision integral must be ensured in order
for the realizability of the stationary state
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Effective Four-Wave Description
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Energy dissipation in small-scale QT
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polarized vortex tangles in homogeneous and isotropic turbulence

- Whether this remains valid for unstructured/anisotropic tangles is still an open
questions

Wave Turbulence description of Kelvin-wave cascade

» LIA description not sufficient: leading dynamics arise from full Biot-Savart dynamics

 Theoretical six-wave interactions break assumptions of locality leading to effective
local four-wave description based upon nonlocal six-wave interaction

- Simulations in both Biot-Savart and Gross-Pitaveskii confirm four-wave description

Perspectives

- Can we quantify the amount of energy transferred to Kelvin waves?
* Are Kelvin-waves weakly nonlinear in reality?
- Observation of Kelvin-wave cascade in velocity energy spectrum?

- UK Fluids Network SIG in Wave Turbulence focussed on strong nonlinearities in WT



