

Kelvin-wave turbulence

Jason Laurie

Mathematics Department Aston University, Birmingham, UK

Collaborators

- A. Baggaley L. Boué
- R. Dasgupta V. L'vov
- S. Nazarenko I. Procaccia
- O. Rudenko

Outline

- I. Introduction
 - · Classical vs. quantum turbulence

II. Kelvin Wave Turbulence Theory

Hamiltonian description, resonant wave interactions, kinetic equations, locality

III. Numerical Simulations

Biot-Savart and Gross-Pitaevskii equations

Nonlinearity, Complex Phenomena and Universality for Waves 15th-20th May 2022, Ile de Porquerolles, France

Turbulence at Large Scales

Polarized vortex bundles and K41

- Polarization of quantum vortex lines into bundles mimic vortex tubes of classical turbulence
- Polarization can be induced from large-scale mixing or from normal fluid at finite-temperature
- Similar Richardson cascade scenario of cascading vortex bundles
- Observation of Kolmogorov energy spectrum

Navier-Stokes

Turbulence at Large Scales

Polarized vortex bundles and K41

- Polarization of quantum vortex lines into bundles mimic vortex tubes of classical turbulence
- Polarization can be induced from large-scale mixing or from normal fluid at finite-temperature
- Similar Richardson cascade scenario of cascading vortex bundles
- Observation of Kolmogorov energy spectrum

Baggaley, JL, Barenghi, Phys. Rev. Lett. **109**, 205304, (2012)

Aston University

Navier-Stokes

Quantum vortex reconnections

- The classical-quantum vortex bundle analogy breaks down at scales near or below the inter-vortex scale ℓ
- Quantum vortex reconnections become important for the redistribution of energy

Quantum vortex reconnections

- The classical-quantum vortex bundle analogy breaks down at scales near or below the inter-vortex scale ℓ
- Quantum vortex reconnections become important for the redistribution of energy

Quantum vortex reconnections

- The classical-quantum vortex bundle analogy breaks down at scales near or below the inter-vortex scale ℓ
- Quantum vortex reconnections become important for the redistribution of energy

Quantum vortex reconnections

- The classical-quantum vortex bundle analogy breaks down at scales near or below the inter-vortex scale ℓ
- Quantum vortex reconnections become important for the redistribution of energy

Mechanisms of energy transport

- 1. Vortex ring emission
 - Rings emitted from reconnection region, directly transferring energy through tangle
- 2. Direct sound emission
 - Phonon emission at reconnection point
- 3. Generation of Kelvin waves
 - Energy and momentum transferred to helical Kelvin waves that propagate along individual quantized vortex lines

Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\theta_c \simeq 0.942\pi$

Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\theta_c\simeq 0.942\pi$

Reconnection angles in QT tangles

- Suppression of large angle reconnections in polarized tangles
- Majority of reconnections will not lead to cascade

Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\theta_c\simeq 0.942\pi$

Reconnection angles in QT tangles

- Suppression of large angle reconnections in polarized tangles
- Majority of reconnections will not lead to cascade
 4% (Counterflow), 2% (Vinen), 1% (Polarized)

Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\theta_c\simeq 0.942\pi$

Reconnection angles in QT tangles

- Suppression of large angle reconnections in polarized tangles
- Majority of reconnections will not lead to cascade 4% (Counterflow), 2% (Vinen), 1% (Polarized)

Modulational instability and self-reconnection

 Strongly nonlinear Kelvin waves can lead to modulational instability and self reconnections

Salman, Phys. Rev. Lett. 111, 165301, (2013)

Isotropic homogeneous small-scale QT

- Polarization inhibits ring emission
- Vortex reconnections transfer large-scale energy to Kelvin waves at superfluid cross-over region
- Possible thermalisation at the intervortex scale
- Weakly nonlinear Kelvin wave interactions transfer energy to even smaller scales

Isotropic homogeneous small-scale QT

- Polarization inhibits ring emission
- Vortex reconnections transfer large-scale energy to Kelvin waves at superfluid cross-over region
- Possible thermalisation at the intervortex scale
- Weakly nonlinear Kelvin wave interactions transfer energy to even smaller scales

Isotropic homogeneous small-scale QT

- Polarization inhibits ring emission
- Vortex reconnections transfer large-scale energy to Kelvin waves at superfluid cross-over region
- Possible thermalisation at the intervortex scale
- Weakly nonlinear Kelvin wave interactions transfer energy to even smaller scales

Wave turbulence description of Kelvin-wave cascade

• Theory for the non-equilibrium statistical description of the weakly nonlinear interaction of an ensemble of waves

Isotropic homogeneous small-scale QT

- Polarization inhibits ring emission
- Vortex reconnections transfer large-scale energy to Kelvin waves at superfluid cross-over region
- Possible thermalisation at the intervortex scale
- Weakly nonlinear Kelvin wave interactions transfer energy to even smaller scales
- Wave turbulence description of Kelvin-wave cascade
- Theory for the non-equilibrium statistical description of the weakly nonlinear interaction of an ensemble of waves
- Main theoretical results
 - 1. Nonlinear kinetic wave equation
 - 2. Steady-state power-law spectra for constant flux transfer of invariants
 - 3. But can easily study nonlinear evolution of higher-order moments and amplitude PDFs

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^3} \times \mathrm{d}\mathbf{r}$$

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^3} \times d\mathbf{r}$$

- Consider deviations $\mathbf{s} = [x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^3} \times d\mathbf{r}$$

- Consider deviations $\mathbf{s} = [x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

a(z,t) = x(z,t) + iy(z,t)

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^3} \times d\mathbf{r}$$

- Consider deviations $\mathbf{s} = [x(z,t),y(z,t),z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t)$$
 $i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$

$$x = y = 0$$

$$\mathbf{s} = [x(z), y(z), z]$$

Aston University

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s} = [x(z,t), y(z,t), z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t) \qquad i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$$
$$\mathcal{H} = \frac{\kappa^2}{4\pi} \int \frac{1 + \operatorname{Re}\left[a^{\prime *}(z_1)a^{\prime}(z_2)\right]}{\sqrt{(z_1 - z_2)^2 + |a(z_1) - a(z_2)|^2}} \, \mathrm{d}z_1 \mathrm{d}z_2$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

Aston University

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s} = [x(z,t), y(z,t), z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t) \qquad i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$$
$$\mathcal{H} = \frac{\kappa^2}{4\pi} \int \frac{1 + \operatorname{Re}\left[a^{\prime *}(z_1)a^{\prime}(z_2)\right]}{\sqrt{(z_1 - z_2)^2 + |a(z_1) - a(z_2)|^2}} \, \mathrm{d}z_1 \mathrm{d}z_2$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

Truncation and weak nonlinear expansion

Aston University

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s} = [x(z,t), y(z,t), z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t) \qquad i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$$
$$\mathcal{H} = \frac{\kappa^2}{4\pi} \int \frac{1 + \operatorname{Re}\left[a^{\prime *}(z_1)a^{\prime}(z_2)\right]}{\sqrt{(z_1 - z_2)^2 + |a(z_1) - a(z_2)|^2}} \, \mathrm{d}z_1 \mathrm{d}z_2$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

Truncation and weak nonlinear expansion

- Regularization of integral by introducing cut-off $\xi < |z_2 - z_1|$

Aston University

Biot-Savart Hamiltonian description

$$\dot{\mathbf{s}} = \frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{\mathbf{r} - \mathbf{s}}{\left|\mathbf{r} - \mathbf{s}\right|^3} \times d\mathbf{r}$$

• Consider deviations $\mathbf{s} = [x(z,t), y(z,t), z(t)]$ around straight vortex line configuration periodic in z

$$a(z,t) = x(z,t) + iy(z,t) \qquad i\kappa \frac{\partial a}{\partial t} = \frac{\delta \mathcal{H}}{\delta a^*}$$
$$\mathcal{H} = \frac{\kappa^2}{4\pi} \int \frac{1 + \operatorname{Re}\left[a^{\prime *}(z_1)a^{\prime}(z_2)\right]}{\sqrt{(z_1 - z_2)^2 + |a(z_1) - a(z_2)|^2}} \, \mathrm{d}z_1 \mathrm{d}z_2$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

Truncation and weak nonlinear expansion

- Regularization of integral by introducing cut-off $\xi < |z_2 z_1|$
- Expand Hamiltonian in powers of the canonical variable:

$$\epsilon = \frac{|a(z_1) - a(z_2)|}{|z_1 - z_2|} \ll 1$$

$$\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4 + \mathcal{H}_6 + \cdots$$

Hamiltonian-Fourier Representation

Wave action representation of the Hamiltonian

• Introduce wave action variables $a(z,t) = \kappa^{-1/2} \sum_{\mathbf{k}} a_{\mathbf{k}}(t) \exp(i \mathbf{k} z)$

Hamiltonian-Fourier Representation

Wave action representation of the Hamiltonian

• Introduce wave action variables $a(z,t) = \kappa^{-1/2} \sum_{\mathbf{k}} a_{\mathbf{k}}(t) \exp(i \mathbf{k} z)$

$$\mathcal{H} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} a_{\mathbf{k}} a_{\mathbf{k}}^* + \frac{1}{4} \sum_{1,2,3,4} T_{3,4}^{1,2} a_1 a_2 a_3^* a_4^* \delta_{3,4}^{1,2} + \frac{1}{36} \sum_{1,2,3,4,5,6} W_{4,5,6}^{1,2,3} a_1 a_2 a_3 a_4^* a_5^* a_6^* \delta_{4,5,6}^{1,2,3} a_4 a_5^* a_6^* \delta_{4,5,6}^{1,2,3} a_5 a_6^* a_6^* \delta_{4,5,6}^{1,2,3} a_5^* a_6^* a_6^* \delta_{4,5,6}^{1,2,3} a_6^* a_6^* a_6^* \delta_{4,5,6}^{1,2,3} a_6^* a_6^* a_6^* \delta_{4,5,6}^{1,2,3} a_6^* a_6^* a_6^* \delta_{4,5,6}^{1,2,3} a_6^* a_6^* a_6^* a_6^* \delta_{4,5,6}^{1,2,3} a_6^* a_6^$$

$$a_1 = a_{\mathbf{k}_1}(t) \qquad T_{3,4}^{1,2} = T(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) \qquad \delta_{3,4}^{1,2} = \delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3 - \mathbf{k}_4)$$

Hamiltonian-Fourier Representation

Wave action representation of the Hamiltonian

• Introduce wave action variables $a(z,t) = \kappa^{-1/2} \sum_{\mathbf{k}} a_{\mathbf{k}}(t) \exp(i \mathbf{k} z)$

$$\mathcal{H} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} a_{\mathbf{k}} a_{\mathbf{k}}^* + \frac{1}{4} \sum_{1,2,3,4} T_{3,4}^{1,2} a_1 a_2 a_3^* a_4^* \delta_{3,4}^{1,2} + \frac{1}{36} \sum_{1,2,3,4,5,6} W_{4,5,6}^{1,2,3} a_1 a_2 a_3 a_4^* a_5^* a_6^* \delta_{4,5,6}^{1,2,3} d_{4,5,6}^{1,2,3} d_{4,5,6}^{1,2,3}$$

$$a_1 = a_{\mathbf{k}_1}(t) \qquad T_{3,4}^{1,2} = T(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) \qquad \delta_{3,4}^{1,2} = \delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3 - \mathbf{k}_4)$$

Interaction coefficients

$$\omega_{\mathbf{k}} = \frac{\kappa\Lambda}{4\pi} \mathbf{k}^{2} - \frac{\kappa}{4\pi} \mathbf{k}^{2} \ln(\mathbf{k}\ell_{\text{eff}}), \qquad \Lambda = \ln\left(\ell_{\text{eff}}/\tilde{\xi}\right) \gg 1, \quad \tilde{\xi} = \xi e^{\gamma + \frac{3}{2}}$$
$$T_{3,4}^{1,2} = -\frac{\Lambda}{4\pi} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} - \frac{1}{16\pi} \left[5\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} + \mathcal{F}_{3,4}^{1,2}\right]$$
$$W_{4,5,6}^{1,2,3} = \frac{9\Lambda}{8\pi\kappa} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} \mathbf{k}_{5} \mathbf{k}_{6} + \frac{9}{32\pi\kappa} \left[7\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} \mathbf{k}_{5} \mathbf{k}_{6} + \mathcal{G}_{4,5,6}^{1,2,3}\right]$$

• Separate logarithm divergent terms by introducing an effective length scale ℓ_{eff} • $\mathcal{F}_{3,4}^{1,2}$ and $\mathcal{G}_{4,5,6}^{1,2,3}$ are terms containing logarithmic contributions

JL *et al.* Phys. Rev. B, **81**, 104526, (2010)

Leading Order Integrability

Local Induction Approximation (LIA)

- If the cutoff is small then terms proportional to Λ give greatest contribution and diverge in the limit $\,\xi \to 0\,$
- Keeping only the leading divergent terms, then the Hamiltonian becomes

$$\mathcal{H} = \frac{\kappa^2 \Lambda}{2\pi} \int \sqrt{1 + \left|a'(z)\right|^2} \,\mathrm{d}z$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

- Shown to be equivalent to the Local Induction Approximation (LIA)
- LIA implies only neighbouring vortex elements determine evolution and corresponds to integrable dynamics
- Subleading in Λ (non-LIA) terms are essential for turbulent Kelvin-wave interactions

Leading Order Integrability

Local Induction Approximation (LIA)

- If the cutoff is small then terms proportional to Λ give greatest contribution and diverge in the limit $\,\xi \to 0\,$
- Keeping only the leading divergent terms, then the Hamiltonian becomes

$$\mathcal{H} = \frac{\kappa^2 \Lambda}{2\pi} \int \sqrt{1 + \left|a'(z)\right|^2} \,\mathrm{d}z$$

Svistunov, Phys. Rev. B, **52**, 3647, (1995)

- Shown to be equivalent to the Local Induction Approximation (LIA)
- LIA implies only neighbouring vortex elements determine evolution and corresponds to integrable dynamics
- Subleading in Λ (non-LIA) terms are essential for turbulent Kelvin-wave interactions

Double expansion in nonlinearity $\epsilon \ll 1$ and divergence $\Lambda^{-1} \ll 1$

Wave resonance

• Waves only transfer energy and momentum to each other when in resonance

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*}$$

Aston University

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp \left(i \, \omega_{\mathbf{k}} \, t \right)$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

Aston University

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp(i \omega_{\mathbf{k}} t)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ b_1 b_2 b_3^* \ \delta_{3,\mathbf{k}}^{1,2} \ \exp\left(-i \ \omega_{3,\mathbf{k}}^{1,2} \ t\right)$$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp(i \omega_{\mathbf{k}} t)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ b_1 b_2 b_3^* \ \delta_{3,\mathbf{k}}^{1,2} \ \exp\left(-i \ \omega_{3,\mathbf{k}}^{1,2} \ t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_{\mathbf{k}} = 0$

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

Aston University

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp(i \omega_{\mathbf{k}} t)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ b_1 b_2 b_3^* \ \delta_{3,\mathbf{k}}^{1,2} \ \exp\left(-i \ \omega_{3,\mathbf{k}}^{1,2} \ t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_{\mathbf{k}} = 0$ Four-wave resonance condition
Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

Aston University

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp \left(i \, \omega_{\mathbf{k}} \, t \right)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ b_1 b_2 b_3^* \ \delta_{3,\mathbf{k}}^{1,2} \ \exp\left(-i \ \omega_{3,\mathbf{k}}^{1,2} \ t\right)$$

- Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 \omega_3 \omega_{\mathbf{k}} = 0$ Four-wave resonance condition
- This means that there are essentially two delta functions:

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp \left(i \, \omega_{\mathbf{k}} \, t \right)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ b_1 b_2 b_3^* \ \delta_{3,\mathbf{k}}^{1,2} \ \exp\left(-i \ \omega_{3,\mathbf{k}}^{1,2} \ t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_{\mathbf{k}} = 0$

Four-wave resonance condition Momentum con

Momentum conservation $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}$

• This means that there are essentially two delta functions:

 $\omega_1 + \omega_2 = \omega_3 + \omega_{\mathbf{k}}$

Energy conservation

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp \left(i \, \omega_{\mathbf{k}} \, t \right)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ b_1 b_2 b_3^* \ \delta_{3,\mathbf{k}}^{1,2} \ \exp\left(-i \ \omega_{3,\mathbf{k}}^{1,2} \ t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_{\mathbf{k}} = 0$

Four-wave resonance condition

Momentum conservation

 $k_1 + k_2 = k_3 + k_3$

• This means that there are essentially two delta functions:

$$\omega_1 + \omega_2 = \omega_3 + \omega_k$$

Energy conservation

Aston University

Wave resonance

- Waves only transfer energy and momentum to each other when in resonance
- In principle, only need to expand Hamiltonian up to first nonlinear term: $\mathcal{H} = \mathcal{H}_2 + \mathcal{H}_4$
- Mode evolution equation

$$i\frac{\partial a_{\mathbf{k}}}{\partial t} = \frac{\delta \mathcal{H}}{\delta a_{\mathbf{k}}^*} = \omega_k a_{\mathbf{k}} + \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} a_1 a_2 a_3^* \delta_{3,\mathbf{k}}^{1,2}$$

• Change variable into rotating coordinate frame $b_{\mathbf{k}} = a_{\mathbf{k}} \exp \left(i \, \omega_{\mathbf{k}} \, t \right)$

$$i\frac{\partial b_{\mathbf{k}}}{\partial t} = \frac{1}{2} \sum_{1,2,3} T_{3,\mathbf{k}}^{1,2} \ b_1 b_2 b_3^* \ \delta_{3,\mathbf{k}}^{1,2} \ \exp\left(-i \ \omega_{3,\mathbf{k}}^{1,2} \ t\right)$$

• Main nonlinear contribution when frequencies cancel: $\omega_{3,\mathbf{k}}^{1,2} \equiv \omega_1 + \omega_2 - \omega_3 - \omega_{\mathbf{k}} = 0$

Four-wave resonance condition

Momentum conservation

• This means that there are essentially two delta functions:

$$\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}$$
$$\omega_1 + \omega_2 = \omega_3 + \omega_{\mathbf{k}}$$

 $\omega_1 + \omega_2 - \omega_3 + \omega_k$ Energy conservation T

Aston University

Only trivial resonances can solve resonance condition for Kelvin-wave frequency

 $\mathbf{k}_1 = \mathbf{k}_3, \quad \mathbf{k}_2 = \mathbf{k}, \quad \text{or} \quad \mathbf{k}_1 = \mathbf{k}, \quad \mathbf{k}_2 = \mathbf{k}_3$

Canonical transformation

• Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_k \rightarrow c_k$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_k \rightarrow c_k$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_{\mathbf{k}} \rightarrow c_{\mathbf{k}}$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions

Aston University

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_k \rightarrow c_k$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_k \rightarrow c_k$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions

Aston University

- Trivial 4-wave resonances only lead to a nonlinear frequency shift of the linear dynamics
- A classical canonical transformation $a_k \rightarrow c_k$ can be used to express Hamiltonian in new variables so non-resonant 4-wave terms do no appear
- Through the transformation, quartic interactions re-appear as sextic \mathcal{H}_6 contributions

Wave action density

Wave action density

• Of particular interest is the second order correlator function $\langle a_{\mathbf{k}}a_{\mathbf{k}_{1}}^{*}\rangle = n_{\mathbf{k}}\delta(\mathbf{k}-\mathbf{k}_{1})$

Wave action density

- Of particular interest is the second order correlator function $\langle a_k a_{k_1}^* \rangle = n_k \delta(k k_1)$
- Wave energy density is related to the wave action by $E_{\mathbf{k}} = \omega_{\mathbf{k}} n_{\mathbf{k}}$

Wave action density

- Of particular interest is the second order correlator function $\langle a_k a_{k_1}^* \rangle = n_k \delta(k k_1)$
- Wave energy density is related to the wave action by $E_{\mathbf{k}} = \omega_{\mathbf{k}} n_{\mathbf{k}}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \,\delta\left(\omega_{4,5,\mathbf{k}}^{1,2,3}\right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\ \times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \,\mathrm{d}\mathbf{k}_1 \,\mathrm{d}\mathbf{k}_2 \,\mathrm{d}\mathbf{k}_3 \,\mathrm{d}\mathbf{k}_4 \,\mathrm{d}\mathbf{k}_5$$

Kozik, Svistunov, Phys. Rev. Lett., 92, 035301, (2004)

Wave action density

- Of particular interest is the second order correlator function $\langle a_k a_{k_1}^* \rangle = n_k \delta(k k_1)$
- Wave energy density is related to the wave action by $E_{\mathbf{k}} = \omega_{\mathbf{k}} n_{\mathbf{k}}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \,\delta\left(\omega_{4,5,\mathbf{k}}^{1,2,3}\right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\ \times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \,\mathrm{d}\mathbf{k}_1 \,\mathrm{d}\mathbf{k}_2 \,\mathrm{d}\mathbf{k}_3 \,\mathrm{d}\mathbf{k}_4 \,\mathrm{d}\mathbf{k}_5$$

Kozik, Svistunov, Phys. Rev. Lett., **92**, 035301, (2004)

Kolmogorov-Zakharov power-law solutions

Wave action density

- Of particular interest is the second order correlator function $\langle a_k a_{k_1}^* \rangle = n_k \delta(k k_1)$
- Wave energy density is related to the wave action by $E_{\mathbf{k}} = \omega_{\mathbf{k}} n_{\mathbf{k}}$

$$\begin{aligned} \frac{\partial n_{\mathbf{k}}}{\partial t} = & \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \, \delta\left(\omega_{4,5,\mathbf{k}}^{1,2,3}\right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\ & \times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \, \mathrm{d}\mathbf{k}_1 \, \mathrm{d}\mathbf{k}_2 \, \mathrm{d}\mathbf{k}_3 \, \mathrm{d}\mathbf{k}_4 \, \mathrm{d}\mathbf{k}_5 \end{aligned}$$
Kozik, Svistunov, Phys. Rev. Lett., **92**, 035301, (2004)

Kolmogorov-Zakharov power-law solutions $\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$

Wave action density

- Of particular interest is the second order correlator function $\langle a_k a_{k_1}^* \rangle = n_k \delta(k k_1)$
- Wave energy density is related to the wave action by $E_{\mathbf{k}} = \omega_{\mathbf{k}} n_{\mathbf{k}}$

One solution corresponds to constant energy transfer to small scales by Kelvin-waves

$$E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$$

Wave action density

- Of particular interest is the second order correlator function $\langle a_k a_{k_1}^* \rangle = n_k \delta(k k_1)$
- Wave energy density is related to the wave action by $E_{\mathbf{k}} = \omega_{\mathbf{k}} n_{\mathbf{k}}$

One solution corresponds to constant energy transfer to small scales by Kelvin-waves

$$E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$$
 Kozik-Svistunov Energy Spectrum

Wave action density

- Of particular interest is the second order correlator function $\langle a_k a_{k_1}^* \rangle = n_k \delta(k k_1)$
- Wave energy density is related to the wave action by $E_{\mathbf{k}} = \omega_{\mathbf{k}} n_{\mathbf{k}}$

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{6} \int \left| \tilde{W}_{4,5,\mathbf{k}}^{1,2,3} \right|^2 \delta_{4,5,\mathbf{k}}^{1,2,3} \,\delta\left(\omega_{4,5,\mathbf{k}}^{1,2,3}\right) n_1 n_2 n_3 n_4 n_5 n_{\mathbf{k}} \\ \times \left[\frac{1}{n_{\mathbf{k}}} + \frac{1}{n_5} + \frac{1}{n_6} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \,\mathrm{d}\mathbf{k}_1 \,\mathrm{d}\mathbf{k}_2 \,\mathrm{d}\mathbf{k}_3 \,\mathrm{d}\mathbf{k}_4 \,\mathrm{d}\mathbf{k}_5 \\ \mathrm{Kozik, Svistunov, Phys. Rev. Lett., 92, 035301, (2004)}$$

Kolmogorov-Zakharov power-law solutions $\frac{\partial n_{\mathbf{k}}}{\partial t} = I\left(n_{\mathbf{k}} = Ck^{-x}\right) = 0$

One solution corresponds to constant energy transfer to small scales by Kelvin-waves

$$E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$$
 Kozik-Svistunov Energy Spectrum

Locality

• With any KZ solutions, convergence of the collision integral must be ensured in order for the realizability of the stationary state

Nonlocal wave interactions

 Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves

Nonlocal wave interactions

- Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves
- Effective four-wave interaction takes place on *curved* vortex line

JL *et al.* Phys. Rev. B, **81**, 104526, (2010) L'vov, Nazarenko, Low Temp. Phys. **36**, 785, (2010)

Aston University

Nonlocal wave interactions

- Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves
- Effective four-wave interaction takes place on *curved* vortex line

JL et al. Phys. Rev. B, **81**, 104526, (2010) L'vov, Nazarenko, Low Temp. Phys. **36**, 785, (2010)

Effective four-wave kinetic description

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{12} \int \left\{ |V_{\mathbf{k}}^{1,2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_{\mathbf{k}}} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{1,2,3}^{\mathbf{k}} \delta \left(\omega_{1,2,3}^{\mathbf{k}} \right) \right. \\ \left. + 3 |V_1^{\mathbf{k},2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_1} - \frac{1}{n_k} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{\mathbf{k},2,3}^1 \delta \left(\omega_{\mathbf{k},2,3}^1 \right) \right\} \, \mathrm{d}\mathbf{k}_1 \, \mathrm{d}\mathbf{k}_2 \, \mathrm{d}\mathbf{k}_3$$

Nonlocal wave interactions

- Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves
- Effective four-wave interaction takes place on *curved* vortex line

JL e*t al.* Phys. Rev. B, **81**, 104526, (2010) L'vov, Nazarenko, Low Temp. Phys. **36**, 785, (2010)

Effective four-wave kinetic description

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{12} \int \left\{ |V_{\mathbf{k}}^{1,2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_{\mathbf{k}}} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{1,2,3}^{\mathbf{k}} \delta \left(\omega_{1,2,3}^{\mathbf{k}} \right) \right. \\ \left. + 3 |V_1^{\mathbf{k},2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_1} - \frac{1}{n_k} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{\mathbf{k},2,3}^1 \delta \left(\omega_{\mathbf{k},2,3}^1 \right) \right\} \, \mathrm{d}\mathbf{k}_1 \, \mathrm{d}\mathbf{k}_2 \, \mathrm{d}\mathbf{k}_3$$

Alternative Kolmogorov-Zakharov solution

$$E_k = C_{LN} \Lambda \kappa^{7/5} \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$$

Nonlocal wave interactions

- Exact calculation of interaction coefficient enabled us to prove that six-wave collision integral diverges in the limit of two long Kelvin-waves
- Effective four-wave interaction takes place on *curved* vortex line

JL e*t al.* Phys. Rev. B, **81**, 104526, (2010) L'vov, Nazarenko, Low Temp. Phys. **36**, 785, (2010)

Effective four-wave kinetic description

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\epsilon^8 \pi}{12} \int \left\{ |V_{\mathbf{k}}^{1,2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_{\mathbf{k}}} - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{1,2,3}^{\mathbf{k}} \delta \left(\omega_{1,2,3}^{\mathbf{k}} \right) \right. \\ \left. + 3 |V_1^{\mathbf{k},2,3}|^2 n_1 n_2 n_3 n_{\mathbf{k}} \left[\frac{1}{n_1} - \frac{1}{n_k} - \frac{1}{n_2} - \frac{1}{n_3} \right] \delta_{\mathbf{k},2,3}^1 \delta \left(\omega_{\mathbf{k},2,3}^1 \right) \right\} \, \mathrm{d}\mathbf{k}_1 \, \mathrm{d}\mathbf{k}_2 \, \mathrm{d}\mathbf{k}_3$$

Alternative Kolmogorov-Zakharov solution

 $E_k = C_{LN} \Lambda \kappa^{7/5} \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$ L'vov-Nazarenko Energy Spectrum

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective *local* four-wave description:

LN:
$$E_{\mathbf{k}} = C_{LN} \kappa \Lambda \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$$

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective local four-wave description: LN: $E_{\mathbf{k}} = C_{LN} \kappa \Lambda \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$

Exact computation of energy spectrum prefactor

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective local four-wave description: LN: $E_{\mathbf{k}} = C_{LN} \kappa \Lambda \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$

Exact computation of energy spectrum prefactor

• Four-wave (3-dimensional) collision integral simple enough to solve directly

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective local four-wave description: LN: $E_{\mathbf{k}} = C_{LN} \kappa \Lambda \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$

Exact computation of energy spectrum prefactor

- Four-wave (3-dimensional) collision integral simple enough to solve directly
- Derivative of collision integral will determine prefactor where $E_{\bf k} = \omega_{\bf k} n_{\bf k} \propto k^{2-x}$

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective local four-wave description: LN: $E_{\mathbf{k}} = C_{LN} \kappa \Lambda \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$

Exact computation of energy spectrum prefactor

- Four-wave (3-dimensional) collision integral simple enough to solve directly
- Derivative of collision integral will determine prefactor where $E_{\bf k} = \omega_{\bf k} n_{\bf k} \propto k^{2-x}$

$$I(x) = \int (q_1 q_2 q_3)^{2-x} (1 - q_1^y - q_2^y - q_3^y) (1 - q_1^x - q_2^x - q_3^x)$$

 $\times \delta (1 - q_1^2 - q_2^2 - q_3^2) \delta (1 - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3) d\mathbf{q}_1 d\mathbf{q}_2 d\mathbf{q}_3$

Boué et al. Phys. Rev. B, 84, 064516, (2011)

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective local four-wave description: LN: $E_{\mathbf{k}} = C_{LN} \kappa \Lambda \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$

Exact computation of energy spectrum prefactor

- Four-wave (3-dimensional) collision integral simple enough to solve directly
- Derivative of collision integral will determine prefactor where $E_{\bf k} = \omega_{\bf k} n_{\bf k} \propto k^{2-x}$

$$I(x) = \int (q_1 q_2 q_3)^{2-x} (1 - q_1^y - q_2^y - q_3^y) (1 - q_1^x - q_2^x - q_3^x)$$

 $\times \delta (1 - q_1^2 - q_2^2 - q_3^2) \delta (1 - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3) d\mathbf{q}_1 d\mathbf{q}_2 d\mathbf{q}_3$

Boué *et al.* Phys. Rev. B, **84**, 064516, (2011)

• Collision integral convergent for 2 < x < 9/2

- Six-wave description with assumed locality: KS: $E_k = C_{KS} \Lambda \kappa^{7/5} \epsilon^{1/5} k^{-7/5}$
- Six-wave nonlocality, with new effective local four-wave description: LN: $E_{\mathbf{k}} = C_{LN} \kappa \Lambda \epsilon^{1/3} \Psi^{-2/3} k^{-5/3}$

Exact computation of energy spectrum prefactor

- Four-wave (3-dimensional) collision integral simple enough to solve directly
- Derivative of collision integral will determine prefactor where $E_{\bf k} = \omega_{\bf k} n_{\bf k} \propto k^{2-x}$

$$I(x) = \int (q_1 q_2 q_3)^{2-x} (1 - q_1^y - q_2^y - q_3^y) (1 - q_1^x - q_2^x - q_3^x)$$

 $\times \delta (1 - q_1^2 - q_2^2 - q_3^2) \delta (1 - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3) d\mathbf{q}_1 d\mathbf{q}_2 d\mathbf{q}_3$

Boué et al. Phys. Rev. B, 84, 064516, (2011)

• Collision integral convergent for 2 < x < 9/2L'vov-Nazarenko spectrum prefactor $C_{LN} = (128\pi)^{1/3} \left(\frac{dI(x)}{dx} \Big|_{x=11/3} \right)^{-1/3} = 0.304$

Identification of Spectrum

History of simulations

- Many previous simulations (Vinen, Tsubota; Kozik, Svisuntov; Barenghi, Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions

Identification of Spectrum

History of simulations

- Many previous simulations (Vinen, Tsubota; Kozik, Svisuntov; Barenghi, Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions
- New Biot-Savart simulation

- Baggaley, JL, Phys. Rev. B, **94**, 025301, (2014)
- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

History of simulations

- Many previous simulations (Vinen, Tsubota; Kozik, Svisuntov; Barenghi, Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions
- New Biot-Savart simulation
- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

Compensated energy spectrum

Baggaley, JL, Phys. Rev. B, **94**, 025301, (2014)

Aston University

History of simulations

• Many previous simulations (Vinen, Tsubota; Kozik, Svisuntov; Barenghi, Baggaley)

Aston University

Baggaley, JL, Phys. Rev. B, 94, 025301, (2014)

- Resolution not sufficient to distinguish between KS and LN spectrum predictions
- New Biot-Savart simulation
- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

History of simulations

• Many previous simulations (Vinen, Tsubota; Kozik, Svisuntov; Barenghi, Baggaley)

Aston University

Baggaley, JL, Phys. Rev. B, 94, 025301, (2014)

- Resolution not sufficient to distinguish between KS and LN spectrum predictions
- New Biot-Savart simulation
- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

History of simulations

- Many previous simulations (Vinen, Tsubota; Kozik, Svisuntov; Barenghi, Baggaley)
- Resolution not sufficient to distinguish between KS and LN spectrum predictions
- New Biot-Savart simulation
- True statistical steady state: additive forcing and hyper-viscous dissipation
- No far-field approximations of Biot-Savart integral

Baggaley, JL, Phys. Rev. B, 94, 025301, (2014)

Gross-Pitaevskii equation

$$i\dot{\Psi} = -\nabla^2\Psi + \Psi \left|\Psi\right|^2$$

Gross-Pitaevskii equation

 $i\dot{\Psi} = -\nabla^2\Psi + \Psi \left|\Psi\right|^2$

- Decaying simulation of a quantum vortex with an initial large-scale distribution of Kelvin waves
- Vortex core accurately tracked
- Nonlocal prediction $E_{\mathbf{k}} \propto k^{-5/3}$ within error bars

มีและกับร่างไม่เรื่องมาใจจะมากระบบก่อมมากระบบกับสามาร์สู่ได้สามาร์สู		an he an an an an train de la train an an	and the second second
Krstulović, Phy	s. Rev. E, 86	, 055301,	(2012)

Gross-Pitaevskii equation

 $i\dot{\Psi} = -\nabla^2\Psi + \Psi \left|\Psi\right|^2$

- Decaying simulation of a quantum vortex with an initial large-scale distribution of Kelvin waves
- Vortex core accurately tracked
- Nonlocal prediction $E_{\mathbf{k}} \propto k^{-5/3}$ within error bars

Wave action spectrum

Krstulović, Phys. Rev. E, **86**, 055301, (2012)

Gross-Pitaevskii equation

 $i\dot{\Psi} = -\nabla^2\Psi + \Psi \left|\Psi\right|^2$

- Decaying simulation of a quantum vortex with an initial large-scale distribution of Kelvin waves
- Vortex core accurately tracked
- Nonlocal prediction $E_{\mathbf{k}} \propto k^{-5/3}$ within error bars

Wave action spectrum

Conclusions and Perspectives

Energy dissipation in small-scale QT

- Evidence to say that Kelvin-waves are important for small-scale energy transfer for polarized vortex tangles in homogeneous and isotropic turbulence
- Whether this remains valid for unstructured/anisotropic tangles is still an open questions

Conclusions and Perspectives

Energy dissipation in small-scale QT

- Evidence to say that Kelvin-waves are important for small-scale energy transfer for polarized vortex tangles in homogeneous and isotropic turbulence
- Whether this remains valid for unstructured/anisotropic tangles is still an open questions

Wave Turbulence description of Kelvin-wave cascade

- LIA description not sufficient: leading dynamics arise from full Biot-Savart dynamics
- Theoretical six-wave interactions break assumptions of locality leading to effective local four-wave description based upon nonlocal six-wave interaction
- Simulations in both Biot-Savart and Gross-Pitaveskii confirm four-wave description

Conclusions and Perspectives

Energy dissipation in small-scale QT

- Evidence to say that Kelvin-waves are important for small-scale energy transfer for polarized vortex tangles in homogeneous and isotropic turbulence
- Whether this remains valid for unstructured/anisotropic tangles is still an open questions

Wave Turbulence description of Kelvin-wave cascade

- LIA description not sufficient: leading dynamics arise from full Biot-Savart dynamics
- Theoretical six-wave interactions break assumptions of locality leading to effective local four-wave description based upon nonlocal six-wave interaction
- Simulations in both Biot-Savart and Gross-Pitaveskii confirm four-wave description

Perspectives

- Can we quantify the amount of energy transferred to Kelvin waves?
- Are Kelvin-waves weakly nonlinear in reality?
- Observation of Kelvin-wave cascade in velocity energy spectrum?
- UK Fluids Network SIG in Wave Turbulence focussed on strong nonlinearities in WT