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Turbulence at Large Scales

Leveque, She, (1993)

Polarized vortex bundles and K41
• Polarization of quantum vortex lines into bundles 

mimic vortex tubes of classical turbulence


• Polarization can be induced from large-scale mixing 
or from normal fluid at finite-temperature


• Similar Richardson cascade scenario of cascading 
vortex bundles


• Observation of Kolmogorov energy spectrum
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• The classical-quantum vortex bundle analogy breaks 
down at scales near or below the inter-vortex scale


• Quantum vortex reconnections become important for 
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Turbulence at the Intervortex Scale

• The classical-quantum vortex bundle analogy breaks 
down at scales near or below the inter-vortex scale


• Quantum vortex reconnections become important for 
the redistribution of energy

Mechanisms of energy transport
1. Vortex ring emission


•Rings emitted from reconnection region, directly 
transferring energy through tangle


2. Direct sound emission


•Phonon emission at reconnection point


3. Generation of Kelvin waves


•Energy and momentum transferred to helical 
Kelvin waves that propagate along individual 
quantized vortex lines

Quantum vortex reconnections

`
`



Quantum Vortex Ring Emission

• A vortex reconnection of two (almost) anti-parallel 
vortices lead to a series of self-reconnections and 
the emission of multiple vortex rings


• Critical angle for ring generation in the Biot-Savart 
model is 

Vortex ring cascade at large angles

Kursa et al. Phys. Rev. B, 83, 014515, (2011)

Kerr, Phys. Rev. Lett. 106, 224501, (2011)
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Quantum Vortex Ring Emission

• A vortex reconnection of two (almost) anti-parallel 
vortices lead to a series of self-reconnections and 
the emission of multiple vortex rings


• Critical angle for ring generation in the Biot-Savart 
model is 

Vortex ring cascade at large angles

Kursa et al. Phys. Rev. B, 83, 014515, (2011)

Kerr, Phys. Rev. Lett. 106, 224501, (2011)

Modulational instability and self-reconnection
• Strongly nonlinear Kelvin waves can lead to 

modulational instability and self reconnections

Salman, Phys. Rev. Lett. 111, 165301, (2013)
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The Kelvin Wave Cascade
Isotropic homogeneous small-scale QT
• Polarization inhibits ring emission


• Vortex reconnections transfer large-scale energy to 
Kelvin waves at superfluid cross-over region


• Possible thermalisation at the intervortex scale


• Weakly nonlinear Kelvin wave interactions transfer 
energy to even smaller scales
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The Kelvin Wave Cascade
Isotropic homogeneous small-scale QT
• Polarization inhibits ring emission


• Vortex reconnections transfer large-scale energy to 
Kelvin waves at superfluid cross-over region


• Possible thermalisation at the intervortex scale


• Weakly nonlinear Kelvin wave interactions transfer 
energy to even smaller scales

Wave turbulence description of Kelvin-wave cascade
• Theory for the non-equilibrium statistical description of 

the weakly nonlinear interaction of an ensemble of waves

1. Nonlinear kinetic wave equation


2. Steady-state power-law spectra for constant flux transfer of invariants


3. But can easily study nonlinear evolution of higher-order moments and 
amplitude PDFs

Main theoretical results
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The Wave Turbulence Setup
Biot-Savart Hamiltonian description
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H = H2 +H4 +H6 + · · ·

• Consider deviations                                          around 
straight vortex line configuration periodic in 

Truncation and weak nonlinear expansion

s = [x(z, t), y(z, t), z(t)]
z

a(z, t) = x(z, t) + iy(z, t)

• Regularization of integral by introducing cut-of

• Expand Hamiltonian in powers of the canonical variable:

Svistunov, Phys. Rev. B, 52, 3647, (1995)

✏ =
|a(z1)� a(z2)|

|z1 � z2|
⌧ 1

⇠ < |z2 � z1|
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Interaction coefficients

• Separate logarithm divergent terms by introducing an effective length scale
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Leading Order Integrability

• If the cutoff is small then terms proportional to     give 
greatest contribution and diverge in the limit


• Keeping only the leading divergent terms, then the 
Hamiltonian becomes

H =
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• Shown to be equivalent to the Local Induction Approximation (LIA)


• LIA implies only neighbouring vortex elements determine evolution and corresponds 
to integrable dynamics


• Subleading in    (non-LIA) terms are essential for turbulent Kelvin-wave interactions
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Leading Order Integrability

• If the cutoff is small then terms proportional to     give 
greatest contribution and diverge in the limit


• Keeping only the leading divergent terms, then the 
Hamiltonian becomes

H =
2⇤

2⇡

Z q
1 + |a0(z)|2 dz

• Shown to be equivalent to the Local Induction Approximation (LIA)


• LIA implies only neighbouring vortex elements determine evolution and corresponds 
to integrable dynamics


• Subleading in    (non-LIA) terms are essential for turbulent Kelvin-wave interactions
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Local Induction Approximation (LIA)

Svistunov, Phys. Rev. B, 52, 3647, (1995)
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• Decaying simulation of a quantum 
vortex with an initial large-scale 
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Wave Turbulence description of Kelvin-wave cascade
• LIA description not sufficient: leading dynamics arise from full Biot-Savart dynamics

• Theoretical six-wave interactions break assumptions of locality leading to effective 

local four-wave description based upon nonlocal six-wave interaction 
• Simulations in both Biot-Savart and Gross-Pitaveskii confirm four-wave description

Perspectives
• Can we quantify the amount of energy transferred to Kelvin waves?

• Are Kelvin-waves weakly nonlinear in reality?

• Observation of Kelvin-wave cascade in velocity energy spectrum?

• UK Fluids Network SIG in Wave Turbulence focussed on strong nonlinearities in WT


