Waves And Complexity
Existence and Stability of Solitary Waves

Gideon Simpson

Department of Mathematics
Drexel University

May 2022
€ Drexel

Gideon Simpson (Drexel) Solitary Waves May 2022 1/86



© Overview

© Existence of Solitary Waves

© Scalar Stability

@ Orbital Stability in Korteweg — de Vries
© Orbital Stability in Nonlinear Schrodinger

@ Extensions
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Introduction to NLS/GP

Nonlinear Schrodinger/Gross-Pitaevksii

i0ep = —V2¢+ V(x)p + f(|¢|)p =0, ¢:RI—C (1.1)
See monographs:
@ Sulem & Sulem (99), [20]
o Cazenave (03), [4]
e Fibich (14), [8]

Often studied over T9, particularly in numerical simulations

“Classical” Focusing Case

i0rp = —V2¢— 9]¢ =0, ¢:R ~C (1.2) |
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Solitary Waves and their Stability
Cubic NLS in 1D
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Structure of NLS/GP

Hamiltonian Flow
0rd = —iDFH (1.3)
Mﬂ=fWW+V&WF+HM% (1.4)

and F/' = f
Other Invariants Mass/Power /Particle # /L>:
Aol = [16f (15)
Also, momentum
Symmetries .
d(x,t) — ep(x + xo, t + to) (1.6)

Additional symmetries when V = 0 and f(s) = +s°
(Dilation and Galilean)
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Function Spaces, [14,7]

Lebesgue spaces For 1 < p < o

1P(RY) — {f | ”|f(x)|f’}1/p < oo} (1.7)

and for p = ©
L (RY) = {f | esssup,|f(x)| < o0} (1.8)

Sobolev space
HYRY) = {£ [ \JIF% + IV FI2 <o (19)
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Sobolev Inequalities

Gagliardo-Nirenberg Inequality, d > 2

For 5
we have g
IF13525 < IVAIZIAE " < 113+ (111)
Dimension d =1
[£llee < [Fllp2, so
113553 < IFIE1FIZe < IFIFRNFIZ: < If)20 (1.12) |
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Solitary Waves

@ Solitary Wave Ansatz:
P(x,t) = e“TR(x;w), (1.13)
@ Solitary wave PDE:
WwR - V2R + V(x)R+ f(IR)R =0 (1.14)

with w > 0, and R is the unknown

o Alternatively, fixing the 2-norm (Mass/Power), (R,w) is the solution
of a nonlinear eigenvalue problem
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@ Existence of Solitary Waves
@ Dimension One

@ Higher Dimensions
@ Uniqueness
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Simplification

e “Classical” focusing case with V =0 and f(s) = —s7:
wR —V?R—|RI*R =0 (2.1)
e “Subcritical” regime:
2
0<o<—— (2.2)

d—2
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Dimension One — First Integrals

Assume R is real valued

OJR— R/I - R20‘+1 — 0
@ Multiply by R’ and integrate:

1

o R20’+2 - K
20+ 2

w
—R2— R/Z
2R L(R)

2

e Under the assumption that R, R’ — 0 at +o0, K =0
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Dimension One — First Integrals

Assume R is real valued

OJR— R/l_ R20‘+1 — 0

Multiply by R’ and integrate:

1

o R20’+2 - K
20+ 2

w
—R2— R/Z
2R L(R)

Under the assumption that R, R’ — 0 at +o0, K =0

Rewrite as

dR

- —d
\/sz _ 1 _R20+2 *
o+1

Infer that the peak (x = 0), where R" =0, is

R(0) = [w(o + 1)] 71
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Solution

e From table of integrals/Mathematica/MAPLE /etc.:

R = [w(o + 1)]2= sech7 (oy/wx)

(2.7)
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Solitary Waves as Minimizers

@ Solitary waves are not minimizers of H
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Solitary Waves as Minimizers

@ Solitary waves are not minimizers of ‘H

2
e H is unbounded from below : let ¢4(x) = Ae 222. Then

H[d)g] ~ AZOZd {a—Z _A20'}

If A— o0, H[pg] — —0
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Solitary Waves as Minimizers

@ Solitary waves are not minimizers of ‘H
[xI2
e H is unbounded from below : let ¢4(x) = Ae 222. Then
H[d)g] ~ A2ad {Oé_2 _ A20’}

If A — o0, H[dg] — —o0
o But, we also have N[¢z]ocA2a?
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Solitary Waves as Constrained Minimizers

@ Consider minimizing H subject to the constraint N' = N

@ Lagrange multiplier problem:

min H[p] + ANT¢] = N) (2.9)
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Solitary Waves as Constrained Minimizers

@ Consider minimizing H subject to the constraint N' = N
@ Lagrange multiplier problem:
min H[o] + AN[g] = N) (2.9)

@ Euler-Lagrange equation:

—V2p— 976 + Ao = 0 (2.10)

Under the identifications ¢ = R and A = w, we have the solitary wave
equation (again)
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Rescaling — Eliminating the Parameter

o Let .
R(x) = w2s R(y/wx) (2.11)

R solves

~V2R—|R*R+R=0 (2.12)

Focus on w = 1 case

External potentials and other nonlinearities break scaling
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Optimal Gagliardo-Nirenberg Constant

An Alternative Variational Problem, Weinstein (83), [21, 20, 8])

Ml s
J[f] - ||f‘ 20+2 (2-13)

[20+2

J is defined over f € HY(RY), f # 0.
Consider the variational problem:

inf  J[F 214
fE:"II?,f#O [] ( )

The infinum, C; 4 > 0, is the optimal constant in the Gagliardo-Nirenberg
inequality:

H f”20+2 2+cr(2 d)

[20+2 =

7 (2.15)

v
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Optimal Constant and Solitary Waves

Theorem
The infinum of J is obtained at f,, a real valued, non-negative, and
radially symmetric function.

f. may be rescaled to correspond to R = Ry, the solitary wave with w = 1.
The optimal constant:

c+1
7d = T o520
7% Rl
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Optimal Constant and Solitary Waves

Theorem

The infinum of J is obtained at f,, a real valued, non-negative, and
radially symmetric function.

f. may be rescaled to correspond to R = Ry, the solitary wave with w = 1.
The optimal constant:

c+1
o d = TS50

IRIES

Gidas, Ni, Nirenberg (81), [9], established these properties, and

R(r)=r T e’ (2.16)
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Optimal Constant and Solitary Waves

Theorem

The infinum of J is obtained at f,, a real valued, non-negative, and
radially symmetric function.

f. may be rescaled to correspond to R = Ry, the solitary wave with w = 1.
The optimal constant:

c+1
o d = TS50

IRIES

Gidas, Ni, Nirenberg (81), [9], established these properties, and

R(r)=r T e’ (2.16)

Asymptotic Decay and Simulation

Important for constructing artificial radiation boundary conditions in
numerical simulation in a finite domain
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Remark: Role in Global Existence of Small Solutions for
od =2

® Suppose |2 < |[R]2
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Remark: Role in Global Existence of Small Solutions for
od =2

o Suppose |2 < |R] 2
@ Then

1 (o2
V|2, = H[] + —kuiz;%

<HI+ gy G VORI (o17)
2/d
< H[Y]+ (ﬁ%) Vol
or 2/d
(1— (%) )\w@ < H[v] (2.18)
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Remark: Role in Global Existence of Small Solutions for
od =2

® Suppose |2 < |[R]2

@ Then
IVl = Hl] + — I3
<HI+ gy G VORI (o17)
<Al + (j\%)% Vo2
) NI\ >
(1 - (%4) ) V612 < M) (218)

@ Anticipate singularities for large data
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Prior Bounds

@ Obviously, J[f] =0

@ By earlier work by Gagliardo-Nirenberg, there exists (non optimal)
C > 0 such that

J[f]>%>0

forall fe HL, f #0
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Minimizing Sequences

o Let f, e HY, f, # 0, be a minimizing sequence of J[f,]:

lim J[f,] = inf J[] (2.19)

n—0o0
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Minimizing Sequences

o Let f, e HY, f, # 0, be a minimizing sequence of J[f,]:
IimOO J[f,] = inf J[f] (2.19)

@ We establish:

» If f, (a minimizer) exists, it can be taken to be real valued, so we may
assume the f, are real

» We may take the f, > 0 and radial

» The f, have a subsequential limit in H!: f,
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The Minimizer is Real Valued

o If £, is a minimizer, express as f,(x)

A(X) ei@(x)

Gideon Simpson (Drexel)
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The Minimizer is Real Valued

o If £, is a minimizer, express as f,(x) = A(x)e/*)
@ Then

(VA + iAVO| 2)o9 | A25 7~
HA”L20+2

2042
_ (IVAI, + |AVO[2) 2 A7
1Al 2042

od/2
Vo2,
=1+ —F—— JIA
( AR A

J[Ae?] =
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The Minimizer is Real Valued

o If £, is a minimizer, express as f,(x) = A(x)e/*)
@ Then

(VA + iAVO| 2)o9 | A25 7~
0
[Ae"] =

JA] 2042

2042
_ (IVAI, + |AVO[2) 2 A7
1Al 2742

od/2
Vo2,
=1+ —F—— JIA
( AR A

@ If 6 # constant, then this is not a minimizer; contradiction
o If a minimizer exists, f,(x) = A(x)e’; take 6 = 0
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The Minimizer is Real Valued

o If £, is a minimizer, express as f,(x) = A(x)e/*)
@ Then

b (IVA+IiAVE] )77 A7
[Ae’®] =
HAHLQM

2042

ju 2+0(2—d
_ (IVAI, + |AVO[2) 2 A7
1Al 2742

od/2
Vo2,
=1+ —F—— JIA
( AR A

@ If 6 # constant, then this is not a minimizer; contradiction
o If a minimizer exists, f,(x) = A(x)e’; take 6 = 0

o We may take the minimizing sequence to be real valued
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Non-negativity of the Minimizing Sequence

@ For f € H1, a real valued function, a.e.,

VIf[| = [V
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Non-negativity of the Minimizing Sequence

@ For f € H1, a real valued function, a.e.,
[V[f]| = |Vf]
o Consequently,

IVIfll2 = V]2
J[f] = J[Ifl]
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Non-negativity of the Minimizing Sequence

@ For f € H1, a real valued function, a.e.,
[V[f]| = |Vf]
o Consequently,

IVIfll2 = V]2
J[f] = J[Ifl]

e We may replace f, with |f,| and relabel: f, >0
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Symmetrization of the Minimizing Sequence

e Steiner symmetrization: for each f,, there exists f,(x) = f,(|x|), a
radial function such that:

[fallo = Ifallee

IValliz < IV fa2
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Symmetrization of the Minimizing Sequence

e Steiner symmetrization: for each f,, there exists f,(x) = f,(|x|), a
radial function such that:

[fallee = Il o
Va2 < |V all.2

o Consequently, J[f,] = J[f,]
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Symmetrization of the Minimizing Sequence

e Steiner symmetrization: for each f,, there exists f,(x) = f,(|x|), a
radial function such that:

[fallo = Ifallee

IValliz < IV fa2

o Consequently, J[f,] = J[f,]
o Replace f, with f, and relabel: a sequence of non-negative, real
valued, radial functions
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Rescaling

o Given f € H* and p, A > 0, let

FAH — pf (Ax)

(2.20)
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Rescaling
o Given f € H* and p, A > 0, let

FAH = pf (M)
e Claim: J is invariant to this scaling:

J[IFMH] = J[f]
o Different norms scale differently:

|43 = w229 FIE

[VFM I = 222V F[,
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Rescaling
o Given f € H* and p, A > 0, let

FAR = puf (Ax)
e Claim: J is invariant to this scaling:

J[FH] = J[F]
o Different norms scale differently:

|43 = w229 FIE

[VFM I = 222V F[,

e For each f,, there exist (\p, 1up) such that:

an/\naﬂnH%Q - Han)\nnun H%2 =1

o Replace f, with £k and relabel
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Extracting the Limit

o We have f, = f5(|x|) = 0 with |£[2, = |[V£,]|2, = 1 and
nll_)mooJ[f,,] = lim

1
S —infJ[f]
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Extracting the Limit
o We have f, = f5(|x|) = 0 with |£[2, = |[V£,]|2, = 1 and

fim J[f] = lim ——— — inf J[f]

= o [l 2z
{o

@ Since f,, are bounded in H!, there exists a subsequence, fn, = fs,
weakly in H'.
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Extracting the Limit
o We have f, = f5(|x|) = 0 with |£[2, = |[V£,]|2, = 1 and

fim J[f] = lim ———— — inf J[f]

n—aoo n—a0 H f “ L2o‘+2

@ Since f,, are bounded in H!, there exists a subsequence, fn, = fs,
weakly in H'.

@ By Fatou's lemma, and reindexing as f,,

[z
IVA L2

liminf £y 2 =1
liminf |[Vf,|2 =1

//\ //\
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Extracting the Limit
o We have f, = f5(|x|) = 0 with |£[2, = |[V£,]|2, = 1 and

lim J[f,] = lim 1

n—00 n—00 Hf]“gg+2

= inf J[f]

@ Since f,, are bounded in H!, there exists a subsequence, fn, = fs,

weakly in H!.
@ By Fatou's lemma, and reindexing as f,,

[z
IVA L2

liminf £y 2 =1
liminf |[Vf,|2 =1

A\ AN

e For radial functions, H! embeds compactly into 272

(0 <2/(d —2)): there exists a subsequence of f, that strongly
converges in L?7*2 to f,

Gideon Simpson (Drexel) Solitary Waves May 2022

25/86



Extracting the Limit, Continued

@ We now have

1 1
< — m ——
AT

n—0o0

im J[f,] = inf J[f]
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Extracting the Limit, Continued

@ We now have

1 1
inf J[f] < J[R] < ——g = lim ——>—— = lim J[f,] = inf J[f]
IR13555 oo R385 o

@ The infinimum is obtained at f,, non-negative and radial
e Additionally, |[fi]2 = [V =1
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Euler-Lagrange Equations

e At a critical point f (i.e., a minimizer):

od 2+0(2—-4d) 2042 o
DJ[f] = — V3f + ~ If?7f =0
IVFIZ 17117 IF175.53
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Euler-Lagrange Equations

e At a critical point f (i.e., a minimizer):

od 2+0(2—-4d)

20+ 2

DJ[f] = — V2f + _ |f‘2‘7f -0
Nz 112, [FIP52
o At f,,
20 +2
DJ[f.] = —odV?f, + [2+ 0(2 — d)]f. — _";H 2041 _
il 202

Gideon Simpson (Drexel) Solitary Waves

May 2022

27 /86



Euler-Lagrange Equations

e At a critical point f (i.e., a minimizer):

od 2+0(2—-4d)

20+ 2

DJ[f] = — V2f + _ |f‘2‘7f -0
Nz 112, [FIP52
o At f,,
20 +2
DJ[f.] = —odV?f, + [2+ 0(2 — d)]f. — _”;2 2041 _
il 202

@ Under another rescaling, this is

~V?R+R— Rt =0
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Additional Remarks

@ Same approach can be used to obtain existence of ground states with
potential — Rose & Weinstein (88), [19, 20]

@ Supercritical case, o > 2/(d — 2), does not have solitary waves —
application of the Pohozaev identities

@ Dark solitons — in settings where |¢p| — 1 at oo, there are solitary

waves
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Uniqueness of the Ground State

@ Under the conclusion of radial symmetry, solitary wave equation

becomes an ODE:
d—1
~-R'———R +R-R*" =0 (2.25)
r

@ By uniqueness of solutions of ODEs, we can conclude uniqueness of
the ground state — see Kwong (89), [13], McLeod & Serrin (87), [16],
and Coffman (72), [6]
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Uniqueness of the Ground State

@ Under the conclusion of radial symmetry, solitary wave equation

becomes an ODE:
d—1
~-R'———R +R-R*" =0 (2.25)
r

@ By uniqueness of solutions of ODEs, we can conclude uniqueness of
the ground state — see Kwong (89), [13], McLeod & Serrin (87), [16],
and Coffman (72), [6]

@ (2.25) has other solutions for d > 2 — excited states, with a nonzero
number of zero crossings
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Uniqueness of the Ground State

@ Under the conclusion of radial symmetry, solitary wave equation
becomes an ODE:
d-—1

~-R'———R +R-R*" =0 (2.25)
r

@ By uniqueness of solutions of ODEs, we can conclude uniqueness of
the ground state — see Kwong (89), [13], McLeod & Serrin (87), [16],
and Coffman (72), [6]

@ (2.25) has other solutions for d > 2 — excited states, with a nonzero
number of zero crossings

@ Another class of exicited states take the form R(x) = p(r)S(0)
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© Scalar Stability
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Scalar Problem

Hamiltonian Flow

For |
H(q,p) = 5p* + V(q) (3.1)
consider the Hamiltonian flow:
q=Hp, = (3.2a)
= —Hy = —V'(q) (3.2b)
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Scalar Problem

Hamiltonian Flow
For

1
H(q,p) = 5p* + V(q) (3.1)
consider the Hamiltonian flow:
q=Hp,= (3.2a)
p=—Hg=—V'(q) (3.2b)

Stationary Solutions

Assume (smooth) V has (local) minimum g., making x, = (q4,0) a
stationary solution of (3.2) —is it stable?
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Scalar Problem

Hamiltonian Flow
For

H(q,p) = 5p* + V(q) (3.1)
consider the Hamiltonian flow:

q=Hp,= (3.2a)
b= —Hy = —V'(q) (32),

Stationary Solutions

Assume (smooth) V has (local) minimum g., making x, = (q4,0) a
stationary solution of (3.2) — is it stable?

Motivation

Much of the intuition and methodology for this problem carries over to
NLS and related problems

v

= = = = et
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Scalar Stability

@ Goal: Use the invariance of H to get stability of the stationary
solution

@ x, will said to be a stable solution of the dynamical system
x" = JDH(x) provided: for all € > 0, there exists > 0, such that

Ixo0 — X«| < = |x(t) — x| <€ (3.3)

for all t
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Scalar Stability

@ Goal: Use the invariance of H to get stability of the stationary
solution

@ x, will said to be a stable solution of the dynamical system
x" = JDH(x) provided: for all € > 0, there exists > 0, such that

Ixo0 — x| <6 = |x(t) — x| <€ (3.3)

for all t

@ In finite dimensions, all norms are equivalent — use whichever is
convenient

e This is not asymptotic stability; x(t) need not converge to x;
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Scalar Stability, Continued

Taylor expanding:
AH = H(q,p) — H(q.,0) = H(g. + dq,6p) — H(qs,0)

1 1
= §5p2 + V/(q*)(5q + EV”(q*)(qu + ... (34)

1 1
= 26p® + =V"(q,)00° + ...
0P+ 5 (gx)éq” +
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Scalar Stability, Continued

Taylor expanding:
AH = H(q,p) — H(q.,0) = H(g. + dq,6p) — H(qs,0)
1 1
- 56p2 + V'(qu)dq + EV”(q,,)éq2 +... (3.4)
1 2 1 " 2
== =V7(q.)0
50P” + 5Vi(a.)og” +

@ Since g, is a (local) minimizer of V, V"(q.) >0
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Scalar Stability, Continued

Taylor expanding:

AH = H(q,p) — H(gx,0) = H(q« + 6q,0p) — H(g,0)
1

1
— 26p2 + V'(q.)dq + EV”(q*)éq2 o (3.4)

1 1
= 26p® + =V"(q,)00° + ...
0P+ 5 (gx)éq” +

@ Since g, is a (local) minimizer of V, V"(q.) >0
e To leading order, we have a prior bound on (dq, dp)

e Not rigorous (yet)
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Scalar Stability, Rigorous Analysis
Theorem

If V is smooth and V"(q.) > 0, then (q.,0) is stable
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Scalar Stability, Rigorous Analysis

Theorem
If V' is smooth and V"(q.) > 0, then (q.,0) is stable J

@ Employ Taylor's theorem with remainder:

V(g +5q) = V() + 3 V'(4.)5¢°
(3.5)

1 1
+ 50 J (1= 7)2V"(q, + 76q)dT
0
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Scalar Stability, Rigorous Analysis
Theorem

If V' is smooth and V"(q.) > 0, then (q.,0) is stable

@ Employ Taylor's theorem with remainder:

1
V(g +8q) = V(q.) + EV”(q*)éqz

+ 50 f (1= 7)2V"(q, + 76q)dT
0
@ Assuming |dq| < 1, there exist C, D > 0, such that
1 1 1
5cspz + EV”(q*)cqu —Céq® < AH < §5p2 + EV"(q*)5q2 + Dég?
EP:(((sq) EP:(&:I)
(3.6)
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Scalar Stability, Rigorous Analysis, Continued

Pi(6)=P_(e) f--------> P_(dq)

[ [

@ ¢, (assumed < 1)
@ € < ¢,; 0 is the value such that P, (d) = P_(e)

@ Geometric Idea: Remain in region where P4 are both monotonic
increasing
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Scalar Stability, Rigorous Analysis, Continued

@ Assume data satisfies:

|0qo| <6 (3.7a)
30P5 + P4(6q0) < P-(9) (3.7b)
e Claim:
l0g(t)] < e 3.8a)
Lop(t)? + P_(6q(t)) < P_(e) 3.8b
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Scalar Stability, Rigorous Analysis, Continued

@ Assume data satisfies:

0Go| <0 7a)
305 + P+(0q0) < P—(9) 3.7b)
o Claim:
0g(t)] < e 3.8a)
1op(t)? + P_(3q(t)) < P—(e) (3.8b)

@ Proof by Contradiction:
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Scalar Stability, Rigorous Analysis, Continued

@ Assume data satisfies:

|0qo| <6 .7a)
30P5 + P4(6q0) < P-(9) 3.7b)
e Claim:
|0g(t)| <e 3.8a)
Lsp(t)? + P_(6q(t)) < P_(e) 3.8b

@ Proof by Contradiction:
@ Suppose € < |0g(t)| < €, then using the polynomial bounds:

30p(t)? + P_(8q(t)) = P_(3q(t))
P_(e) > P_(0) = 16p + P4 (dq0) = AHo

AH(t) (3.9)
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Scalar Stability, Rigorous Analysis, Continued
@ Now suppose [6q(t)| < ¢, but
P_(e) < 30p(t)* + P—(dq(t)) (3.10)
@ Then

AHo < 2692 + P (6q0) < P_(6) < P_(e)
: (3.11)
< 55p(t)2 + P_(5q(t)) < AH(t)

e Consequently, (dq(t),dp(t)) will stay within the € neighborhood of
(0,0)
@ This relies on the solution, (q(t), p(t)) being a continuous:

(q(t), p(t)) € C(0,00; R?). (3.12)

We omit the details
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@ Orbital Stability in Korteweg — de Vries

@ Orbits
@ [nvariant Bounds

@ Spectral Analysis
@ Remarks
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Generalized Korteweg—de Vries (gKdV)

ur + uPuy + e = 0,

p=1

(4.1)

Gideon Simpson (Drexel)
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Generalized Korteweg—de Vries (gKdV)

Ut+UPUX+UXXX=0, p=1

@ Also Hamiltonian,

1 1
Hlul = f_u)% - _uPT2x
=) 2% e
uy = 5XD,JH
@ Also conserves L2, 1
Nlu] =5 f u?dx

Gideon Simpson (Drexel) Solitary Waves

May 2022
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Generalized Korteweg—de Vries (gKdV)

ur +uPuc+ U =0, p=1

@ Also Hamiltonian,

1 1
Hlul = f_u)% - _uPT2x
=] 5% a2
uy = 5XD,JH
@ Also conserves L2, 1
Nlu) =5 f U dx

@ Also has solitary wave solutions

(4.1)

(4.2)

(4.3)

(4.4)

1
be(&) = [cw]p sech» <‘/2Ep ) , E=x—ct—xp (4.5)
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Generalized Korteweg—de Vries (gKdV)

ur +uPuc+ U =0, p=1 (4.1)

@ Also Hamiltonian,

1 1
Mol = [ 308~ 0 42
=] 5% a2 *2
uy = 0D, H (4.3)

@ Also conserves L2, 1
Nu) = 5 [ o2 (4.4)

@ Also has solitary wave solutions

dc() = [cw]; sech? <@§) , E=x—ct—xp (4.5)

@ Stability proof is simpler, but has same steps as NLS
May 2022  39/86



Background on Orbital Stability in (g)KdV

@ Major result from Benjamin (1972), [1], inspired by Boussinesq
(1877), [3]
@ Result improved/corrected by Bona (1975), [2]

@ Weinstein (1986) applied ideas developed NLS to gKdV, [23] -
approach presented here

e Methodology of Grillakis, Shatah, and Strauss (1987, 1990) [10, 11];
see, also, Kapitula & Promislow (2013), [12]
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Necessity of a New Metric

@ Given a fixed ¢ > 0 and xp = 0, consider the stability of ¢,

@ Consider a slightly perturbed solitary wave, ¢ with ¢’ > ¢; for any of
the “usual” norms (i.e., LP or H%),

lim [¢c — ¢c/|| — 0 (4.6)
c’—c
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Necessity of a New Metric

@ Given a fixed ¢ > 0 and xp = 0, consider the stability of ¢,

@ Consider a slightly perturbed solitary wave, ¢ with ¢’ > ¢; for any of
the “usual” norms (i.e., LP or H%),

lim [¢c — ¢c/|| — 0 (4.6)
c’—c

@ But as t ', waves separate:

3

2

1
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Necessity of a New Metric

@ Given a fixed ¢ > 0 and xp = 0, consider the stability of ¢,

@ Consider a slightly perturbed solitary wave, ¢ with ¢’ > ¢; for any of
the “usual” norms (i.e., LP or H%),

lim [¢c — ¢c/|| — 0 (4.6)
c’—c

@ But as t ', waves separate:

3

2

1

0

0 100 200 300

@ Need a new metric

Gideon Simpson (Drexel) Solitary Waves May 2022 41/86



Sliding Metric and Orbital Stability

@ Introduce the “sliding” metric
d(F.g) = inf If —g(+ Yl = inflg — FC+ V)l (47)

@ Removes the spatial translation symmetry of the problem
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Sliding Metric and Orbital Stability

@ Introduce the “sliding” metric
d(f.g) = inf If ~ g+ Yl = infllg — FC+ V)l (a7)

@ Removes the spatial translation symmetry of the problem
@ This is equivalent to

d(f,g)=g'nf | = &l (4.8)

where O(g) is the orbit of g under the translation symmetry group:

Og) ={g(- +y)} (4.9)
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Sliding Metric and Orbital Stability

@ Introduce the “sliding” metric
d(f.g) = inf If ~ g+ Yl = infllg — FC+ V)l (a7)

@ Removes the spatial translation symmetry of the problem
@ This is equivalent to

d(f,g)=g'nf | = &l (4.8)

where O(g) is the orbit of g under the translation symmetry group:

Og) ={g(- +y)} (4.9)

@ ¢ will be orbitally stable if

d(uo, ¢c) < 6 = d(u(t), dc) < € (4.10)
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Sliding Metric, Continued

@ Slight generalization of the metric: For ¢ > 0

) =inf\IF =g+ )+ clf —g(+y)E (411)

@ From previous slide, d = d;
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Sliding Metric, Continued

@ Slight generalization of the metric: For ¢ > 0

) =inf\IF =g+ )+ clf —g(+y)E (411)

@ From previous slide, d = d;

@ These are all equivalent distances:

vmin{l,c}di(f,g) <dc(f,g) < v/max{l,c}di(f,g) (4.12)
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Sliding Metric, Continued

Slight generalization of the metric: For ¢ > 0

) =inf\IF =g+ )+ clf —g(+y)E (411)

From previous slide, d = d;

@ These are all equivalent distances:

vmin{l,c}di(f,g) <dc(f,g) < v/max{l,c}di(f,g) (4.12)

For stability of ¢., we will prove d., the physical metric, remains
small, and infer di, the mathematical metric, remains small
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Orbital Stability of gKdV

Theorem

For p < 4, and all c > 0, the gKdV solitary wave is orbitally stable. For all
€ > 0, there exists § > 0, such that

dc(up, ¢c) < 0 = dc(u(t),dc) <€, t=0.
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Orbital Stability of gKdV

Theorem

For p < 4, and all c > 0, the gKdV solitary wave is orbitally stable. For all
€ > 0, there exists § > 0, such that

dc(up, ¢c) < 0 = dc(u(t),dc) <€, t=0.

Strategy of proof:

e Decompose u(t) into the solitary wave an a perturbation
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Orbital Stability of gKdV

Theorem

For p < 4, and all c > 0, the gKdV solitary wave is orbitally stable. For all
€ > 0, there exists § > 0, such that

dc(up, ¢c) < 0 = dc(u(t),dc) <€, t=0.

Strategy of proof:
e Decompose u(t) into the solitary wave an a perturbation

@ Form a linear combination of the invariants and Taylor expand them
about the solitary wave

Gideon Simpson (Drexel) Solitary Waves May 2022 44 /86



Orbital Stability of gKdV

Theorem

For p < 4, and all c > 0, the gKdV solitary wave is orbitally stable. For all
€ > 0, there exists § > 0, such that

dc(up, ¢c) < 0 = dc(u(t),dc) <€, t=0.

Strategy of proof:
@ Decompose u(t) into the solitary wave an a perturbation

@ Form a linear combination of the invariants and Taylor expand them
about the solitary wave

@ Show that a certain quadratic form is positive and bounded by these
invariants such that the perturbation is bounded in terms of the data
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Decomposition
o At time t, the optimal xp = xp(t) minimizes d.:

dc(U(t), ¢c)2 = Hax¢c - aXu(' + XO(t)a t))“iz

relbe—ul+@ ) O
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Decomposition
o At time t, the optimal xp = xp(t) minimizes d.:

de(u(t), ¢C)2 = [|0xpc — Oxu(- + xo(t), t))H%Z
+ cllpe — ul- + x0(t), 1)) |72

@ Decompose as:
U(X + XO(t)a t) = (bC(X) + V(Xa t)

SO
de(u(t), ¢c)? = [[oxv] {2 + Vi

Gideon Simpson (Drexel) Solitary Waves
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Decomposition
o At time t, the optimal xp = xp(t) minimizes d.:

dc(u(t), ¢c)2 = Hﬁxqsc - aXU(' + XO(t)a t))”%z

) (4.13)
+cfde — u(- + xo(t), 1)) 12
@ Decompose as:
u(x + xp(t), t) = dpe(x) + v(x, t) (4.14)
so

dc(u(t),<;5c)2 = HaXVH%Q + CHVH%2 (4.15)

o Important: v satisfies an orthogonality condition
($Poberv) = f Podev = 0 (4.16)
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Action Expansion

@ Define the action

Sclu] = H[u] + cNu]
e Using u(- + xp) = ¢pc + v:

Sc[u] = Sc[d’c + V]

Gideon Simpson (Drexel) Solitary Waves
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Action Expansion

@ Define the action

Sclu] = H[u] + cNu] (4.17)
@ Using u(- + xp) = ¢c + vt

Seclu] = Sc[¢c + v] (4.18)
o Taylor expand:
ASc(t) = H[v(t) + ¢c] = Hlpe] + cN[v(t) + ¢c] — Noc])
- %J{sz + 2V Ok + VP + 2cvc ) dx

—j{p+1¢p+1v~l— —oP 2}dx

_ J {v3 fol E(ge+rmvPa- T)ZdT} dx

Gideon Simpson (Drexel) Solitary Waves May 2022 46 / 86
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Action Expansion, Continued

@ Grouping terms:

Selt) = 2 (Lv.v) - f{f (0c+ TP (1= 7dr | o

_

v~

re,p[v]
(4.20)

@ Quadratic form (Lv,v):

L= —0+c— P, (4.21)

Schrodinger operator, self-adjoint on L2(R9)
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Bounding the Remainder

renlvll = U{ d)c +7v)PH(1 - T)dT} dx
J'VP {J (IpelP™ + |v[P~ 1)dr} dx (4.22)

2
< Ivlis + IvIzes
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Bounding the Remainder

renlvll = U{ d)c +7v)P (1 _T)dT} dx
JWP{J- (IpelP™ + |v[P~ l)dr} dx (4.22)

< IIEs + IvIgs

@ By Sobolev inequalities, for g = 2,
[Vl < v (4.23)
@ Hence there exist positive constants C and D such that

2
replvll < CllviEn + Dlvipa (4.24)
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Upper Bound on the Quadratic Form

Ly, vy = ' [(ew?+ - onv?

(4.25)
< oxviZ + IvIZ: < vz
Thus, there exists A > 0, such that
[{Lv,v)| < Alvi}s (4.26)
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Reviewing Estimates so Far

@ Using the upper bound on the quadratic form and the Taylor bound
on the remainder:

1
5 {Lv,vy = Clv[ = D|v|fy?
1
< AS(0) = AS(t) = 3 (Lv,v) —rcp[v]

1 2
< EAHVH%I + Clv[3n + DIv|5i
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Reviewing Estimates so Far

@ Using the upper bound on the quadratic form and the Taylor bound
on the remainder:

—<LV v) = Clv[ip - DH s
< ASC(O) = ASc(t) = 5 <LV7 V> - rCyP[V]

2
SAIVIE + Clvia + Dlvips

o IF (Lv,v) = B|v|?, + O(|v[3;) with B > 0, then

P_(IvDpr < AS(0) < P([[v]m)

1
P_(x) = EBX2 — Cx3 — DxP*?

1
P (x) = §AX2 + Cx® + DxP+?
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Relationship to the Finite Dimensional Case

@ Recall the finite dimensional bound, (3.6):

1
%5,:2 +P_(0g) < AH < §5p2 + P, (dq)

@ We almost have:

P_([v)m < ASc < Pi(|Ivilp2)
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Hypothetical Bound

Suppose, for all ||v| 4 small enough:

P_(IvDm < AS < P([v]m)

1
I
AS,[--= A T
PL@) = P(f 77T

p_(olm) and the data satisfies:

1
1
|
|
I
|
€

Pr(lvol)r < P-(9)

Assume At some time € < ||v(t)||y < €c. Then:

ASc(t) = P([v(t)] ) > P-(e) > P-(0)
= Py (vl = AS:(0)

Contradiction ||v(t)|1 < € for all time
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Linear Operator
Lemma

For the operator

v
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Linear Operator

Lemma
For the operator

@ Recall the solitary wave equation:

_axxxd)c + Cax¢c - ¢gax¢c =0
Loxpe =0

so there is a zero eigenvalue

@ Ox¢. has one zero crossing — not the ground state

@ Sturm-Liouville theory tells us there exists a negative eigenvalue
corresponding to the ground state, 19 > 0, of L — See Titschmarash
('46, '58) for proof on real line, also [12]
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Linear Operator

Lemma
For the operator

@ Recall the solitary wave equation:

_axxxd)c + Cax¢c - ¢gax¢c =0
Loxpe =0

so there is a zero eigenvalue
@ Ox¢. has one zero crossing — not the ground state
@ Sturm-Liouville theory tells us there exists a negative eigenvalue
corresponding to the ground state, 19 > 0, of L — See Titschmarash
('46, '58) for proof on real line, also [12]
e For generic v e H, (Lv,v) can be <0
Gideon Simpson (Drexel) Solitary Waves May 2022  53/86



Geometry of the Quadratic Form

813 ¢C

Yo
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Constraints for Coercivity

constraints

@ L has two bad directions — we will project off them with two
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Constraints for Coercivity

@ L has two bad directions — we will project off them with two
constraints

@ Recall, by the choice of xg in the sliding metric,

(PROxpc,v) =0
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Constraints for Coercivity

@ L has two bad directions — we will project off them with two
constraints

@ Recall, by the choice of xg in the sliding metric,

(PROxpc,v) =0

@ Second constraint, assume

Nopc] = Nup] = N{u(t)] = Nopc + v(t)] (4.27)
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Constraints for Coercivity

@ L has two bad directions — we will project off them with two
constraints

Recall, by the choice of xp in the sliding metric,

(PROxpc,v) =0

Second constraint, assume

Nopc] = Nup] = N{u(t)] = Nopc + v(t)] (4.27)

@ This introduces a near orthogonality condition:

(fc; v) = ——HVHLz (4.28)

@ The N|[¢c] = N[up] condition can be relaxed
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Quadratic Form Result

Proposition

If ($R0xpe, vy = 0, {pc, v) = —3| V|, and LN [¢c] > 0, then

(Lv,v) 2 VIt = Vi

— vl
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Quadratic Form Result

Proposition
If ($R0xpe, vy = 0, {pc, v) = —3| V|, and LN [¢c] > 0, then

2 3
Lv,vy 2 IvIEn = IvIe = Ivia

Strategy of Proof
@ Show (Lv, v) > 0 under ideal orthogonality conditions
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Quadratic Form Result

Proposition
If ($R0xpe, vy = 0, {pc, v) = —3| V|, and LN [¢c] > 0, then

2 3
Lv,vy 2 IvIEn = IvIe = Ivia

Strategy of Proof
@ Show (Lv, v) > 0 under ideal orthogonality conditions

@ Show (Lv,v) 2 |v|?, under ideal orthogonality conditions
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Quadratic Form Result

Proposition
If ($R0xpe, vy = 0, {pc, v) = —3| V|, and LN [¢c] > 0, then

2 3
Lv,vy 2 IvIEn = IvIe = Ivia

Strategy of Proof
@ Show (Lv, v) > 0 under ideal orthogonality conditions
@ Show (Lv,v) 2 |v|?, under ideal orthogonality conditions

@ Infer (Lv,v) 2 |v|?, under ideal orthogonality conditions
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Quadratic Form Result

Proposition
If ($R0xpe, vy = 0, {pc, v) = —3| V|, and LN [¢c] > 0, then

2 3
Lv,vy 2 IvIEn = IvIe = Ivia

Strategy of Proof
@ Show (Lv, v) = 0 under ideal orthogonality conditions
@ Show (Lv,v) 2 |v|?, under ideal orthogonality conditions
@ Infer (Lv,v) 2 |v|?, under ideal orthogonality conditions

@ Generalize to near orthogonality conditions
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Non-negativity of the Quadratic Form
Proposition
If

then

L Npe] >0
(0]

inf
(fpec)=0,[f],2=1

(LF,fYy=0
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Non-negativity of the Quadratic Form

Proposition
If
EN[gc] > 0
then
o

inf Lf, =0
<f,¢c>=o,ufuLz=1< ’

Proof: Since 0x¢c L ¢ and Loy = 0, we are assured a < 0.
Additionally,

a>= inf (Lf f)= Xy > —0, (4.29)
”f”L2=1

so a € [Ao, 0].

Gideon Simpson (Drexel) Solitary Waves May 2022 57 /86




Non-negativity of the Quadratic Form

Proposition
If
&NTgc] >0
then
o= inf (Lf,fy=0
(Fpe)=0,]f2=1 )

Proof: Since 0x¢c L ¢ and Loy = 0, we are assured a < 0.
Additionally,

a>= inf (Lf f)= Xy > —0, (4.29)
”f”L2=1

so a € [Ao, 0].
Sufficient to show « = 0. Proof is by contradiction(s).
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Non-negativity of the Quadratic Form

Proposition
If
&NTgc] >0
then
o= inf (Lf,fy=0
(Fpe)=0,]f2=1 )

Proof: Since 0x¢c L ¢ and Loy = 0, we are assured a < 0.
Additionally,

a>= inf (Lf f)= Xy > —0, (4.29)
”f”L2=1

so a € [Ao, 0].
Sufficient to show « = 0. Proof is by contradiction(s).
Assume: a € [Ao,0).
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Non-negativity, Continued
Assuming « € [\, 0)

Lagrange Multiplier Formulation

Using the method of Lagrange multipliers:

(L—a)f, = Boc
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Non-negativity, Continued
Assuming « € [\, 0)

Lagrange Multiplier Formulation
Using the method of Lagrange multipliers:

(L - Oé)f; = ngc

B #0

Suppose 5 = 0. Then o < 0 is an eigenvalue. But L has only one negative
eigenvalue (by Sturm-Liouville) and oo = Ao, so f, = g = 0 is the ground
state, but (1o, ¢y # 0, contradiction.
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Non-negativity, Continued
Assuming « € [\, 0)

Lagrange Multiplier Formulation
Using the method of Lagrange multipliers:

(L - a)f; = ngc

g #0

Suppose 5 = 0. Then o < 0 is an eigenvalue. But L has only one negative
eigenvalue (by Sturm-Liouville) and oo = Ao, so f, = g = 0 is the ground
state, but (1o, ¢y # 0, contradiction.

Even with 3 # 0, o # g
If o = Ao,

0 = {f, (L= Xol)¢o) = (L = Aol o) = B{¢e; Y0y # O

v
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Non-negativity, Continued
B8#0, a€ ()\0,0)

Spectral Function
For A € (Ao, 0],

g0 ={(L=AD)""¢c, bey, (4.30)

g’ = (L=l >0, (4.31)
non-decreasing )
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Non-negativity, Continued
B8#0, a€ ()\0,0)

Spectral Function
For X € (Ao, 0],

g(\) = ((

0q

P
®

S—
[l

non-decreasing

L—M)" e, ¢c), (4.30)
(L =AD" el = 0, (4.31)

Properties of the Spectral Function

gla) ={(L—al)”

and

g(O) = <L_1¢c> ¢c>

1¢C7¢C> = 6_1 <f*a¢c> = 0.

Gideon Simpson (Drexel)
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Non-negativity, Continued
B8#0, a€ ()\0,0)

@ Recall the solitary wave equation:

- xx¢c+c¢c_

e 1¢g+1
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Non-negativity, Continued
B8#0, a€ ()\0,0)

@ Recall the solitary wave equation:

9et =0

_xxc“" c
Pc + co bl

o Differentiate in c:

_axxacd)c + C8c¢c - ¢Igac¢c = —¢c

Lowo. (4.32)
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Non-negativity, Continued
B8#0, a€ ()\0,0)

@ Recall the solitary wave equation:

_ _ p+1 =0
e + Che p+1¢c

o Differentiate in c:

_axxacd)c + C8c¢c - ¢Igac¢c = —¢c

Looo. (4.32)

o Consequently
L gc = —dce + kdxde

and

g(O) = <L_1¢C7 ¢c> = _<ac¢67 ¢c> = _%N[(bc]
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Non-negativity, Continued
B8#0, a€ ()\0,0)

@ g(A) is non-decreasing over (Ao, 0]
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Non-negativity, Continued
B8#0, a€ ()\0,0)

@ g(A) is non-decreasing over (Ao, 0]
o If %/\/[qﬁc] > 0, then g(0) < 0; so g(\) < 0 over (Ao, 0]
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Non-negativity, Continued
B8#0, a€ ()\0,0)

@ g(A) is non-decreasing over (Ao, 0]
o If %/\/[qﬁc] > 0, then g(0) < 0; so g(\) < 0 over (Ao, 0]
e But g(«) = 0; contradiction
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Non-negativity, Continued
B8#0, a€ ()\0,0)

@ g(A) is non-decreasing over (Ao, 0]
o If %/\/[qﬁc] > 0, then g(0) < 0; so g(\) < 0 over (Ao, 0]
e But g(«) = 0; contradiction

@ Conclusion: « >0=a=0
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Vakhitov-Kolokolov (VK) Condition

%N[@] >0 (4.33)

is a Vakhitov-Kolokolov condition; appears in NLS and other Hamiltonian

equations with solitary waves
For gKdV/,

2_1
Nlgclocer2,
so VK holds for p < 4
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Getting Positivity

We have

(67

inf Lf, =0
<f,¢c>=0,HfHLz=1< ’

but not positivity.

Proposition
If VK holds:

n inf (Lf,f)>0

(Frpe)=0,f,¢20xbc y=0, || .2 =1

(4.34)

Proof: 7 > a = 0. Suppose n = 0. Proceed with Lagrange Multipliers
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Getting Positivity, Continued
n=20

Lagrange Multipliers

Lf; = >\1¢c + )\Z(bgax(ﬁc

won)
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Getting Positivity, Continued

n=0
Lagrange Multipliers
Lf* = )\1¢c + )\2¢56x¢c (4-35)
Zeroing out Multipliers
<ax¢Ca Lf*> = )\1 <¢Ca ax(pc> + )\2 <¢€ax¢c; aX¢C>
0 = (Ldxge, fry = A1- 0+ Ao f PP (Oxpe)? (4.36)
| S —
>0
and
ac c:Lf; =A ac @) We
(Octe, LE) 13 bc, by (4.37)
0=— <¢67 f;> = <Lac¢C7 f;> = )\IEN[(ﬁc] )
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Getting Positivity, Continued
n=20

@ We conclude Lf, =
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Getting Positivity, Continued
n=20

@ We conclude Lf, =
o f*ocaxfz)c
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Getting Positivity, Continued
n=0

@ We conclude Lf, =
o f,0C0xpc

e But £, L ¢£0,¢.; contradiction
@ Son>0
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H' Bound

@ We have proven that for {f,¢.) =0, <f, ¢58X¢c> =0,

(LE,F) = n|flE
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H' Bound

@ We have proven that for {f,¢.) =0, <f, ¢58X¢c> =0,

(LE, ) = lf|f
o Want a lower bound in terms of H?
(LEF) = 0xf|72 — Kf]Z2
> [0xfl 72 — Sl fl22
> [0F |3 — K(LF )

Hence,

(Lf,f) > 1—\!5 ffz = (LF, £) 2 |IflE

Gideon Simpson (Drexel) Solitary Waves May 2022
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Working with Near Orthogonality Conditions

e Our positivity is for {f, ¢c) = 0,{f, p20xpcy =0
@ We have <V, ¢c> = —%HVH%zy <V7 ¢€ax¢c> =0
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Working with Near Orthogonality Conditions

e Our positivity is for {f, ¢c) = 0,{f, p20xpcy =0
@ We have <V, ¢c> = —%HVH%zy <V7 ¢€ax¢c> =0

Proposition
For v satisfying the above conditions:

(Lv,v) > G|vign — GllvIin — CalvIin
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Working with Near Orthogonality Conditions

e Our positivity is for {f, ¢c) = 0,{f, p20xpcy =0
@ We have <V7 ¢c> = —%HVH%zy <V7 ¢€ax¢c> =0

Proposition
For v satisfying the above conditions:

(Lv,v) > G|vign — GllvIin — CalvIin

Proof: Decompose v:
v=v] + v

where v = (v, ¢c) ¢c

Gideon Simpson (Drexel) Solitary Waves

May 2022

(4.38)

67 /86



Working with Near Orthogonality Conditions, Continued

Substituting into the quadratic form:

(Lv,vy = {Lvi,viy +2{Lvi, vy + Ly}, v))
and v, satisfies the assumptions, so

VIEn =21Vl [Kv, de)l = v, de)?

(Lvi,viyz vi|2s =
= e T e I

using near orthogonality |(v, ¢c)| = 5[ v|3,
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Notes on the Result

@ We proved |v|y = di(u, ¢¢) is bounded in terms of invariants; since
d; = dc, we infer dc(u, ¢c) < €, closing the proof
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Notes on the Result

@ We proved |v|y = di(u, ¢¢) is bounded in terms of invariants; since
d; = dc, we infer dc(u, ¢c) < €, closing the proof
@ To relax N[up] = N[¢c], note that if ug = ¢ + ..., there exists
¢ ~ ¢, such that Nup] = N[¢¢]
» Prove stability against ¢/
» Observe that ¢/ — ¢ as ug — ¢,
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Notes on the Result

@ We proved |v|y = di(u, ¢¢) is bounded in terms of invariants; since
d; = dc, we infer dc(u, ¢c) < €, closing the proof
@ To relax N[up] = N[¢c], note that if ug = ¢ + ..., there exists
¢ ~ ¢, such that Nup] = N[¢¢]
» Prove stability against ¢/
» Observe that ¢/ — ¢ as ug — ¢,

@ Our proof relied on spectral information about L:

» Kernel is just dx¢.
» L has single negative eigenvalue
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Notes on the Result

@ We proved |v|y1 = di(u, @) is bounded in terms of invariants; since
d; = dc, we infer dc(u, ¢c) < €, closing the proof
@ To relax N[up] = N[¢c], note that if ug = ¢ + ..., there exists
¢’ ~ ¢, such that Mug| = N[oc]
» Prove stability against ¢/
» Observe that ¢/ — ¢ as ug — ¢,
@ Our proof relied on spectral information about L:
» Kernel is just dx¢.
» L has single negative eigenvalue
e We did not require detailed/explicit information about ¢ or the
ground state — this was the advance of Weinstein [23] over
Benjamin/Bona [1,2]
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© Orbital Stability in Nonlinear Schrodinger
@ Orbits

@ [nvariant Bounds

@ Spectral Analysis
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Necessity of the Sliding Metric in NLS

=00

15

— %
1.0 —3
—ul
05
0.0
-0.5
-1.0
i) -5 5

Gideon Simpson (Drexel)

Solitary Waves

— 1l
-05
-10
ity -5 0 5 10
z




Sliding Metric and Orbits for NLS

@ Must contend with both translations and phase shifts:

du(F.8) = inf \[IVF(- + y)el = Vgl + wlf(-+ y)e — gl
(5.1)

o R, will orbitally stable if:

dw (0, Rw) <0 = dy,(6(t),R,) <€ (5.2)
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Orbital Stability for NLS

Theorem

For od < 2 and all w > 0, the NLS solitary wave is orbitally stable. For all
e > 0, there exists 0 > 0, such that

dw(¢o, Rw) < 0 = dy(o(t), Ru) <€, t=0.
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Orbital Stability for NLS

Theorem

For od < 2 and all w > 0, the NLS solitary wave is orbitally stable. For all
e > 0, there exists 0 > 0, such that

dw(¢o, Rw) < 0 = dy(o(t), Ru) <€, t=0.

Strategy of Proof

@ Decompose ¢ into R and a perturbation
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Orbital Stability for NLS

Theorem

For od < 2 and all w > 0, the NLS solitary wave is orbitally stable. For all
e > 0, there exists 0 > 0, such that

dw (9o, Rw) <0 = du(o(t),Ry) <€, t

A\
o

Strategy of Proof

@ Decompose ¢ into R and a perturbation

@ Taylor expand an action functional
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Orbital Stability for NLS

Theorem

For od < 2 and all w > 0, the NLS solitary wave is orbitally stable. For all
e > 0, there exists 0 > 0, such that

dw(¢o, Rw) < 0 = dy(o(t), Ru) <€, t=0.

Strategy of Proof
@ Decompose ¢ into R and a perturbation
@ Taylor expand an action functional

@ Prove that two quadratic forms are non-negative

Gideon Simpson (Drexel) Solitary Waves May 2022 73/86



Decomposition

@ At optimal choice displacement and phase in the orbit (minimizing

d,(o(t), Ry):
e"We(x + xo(t),t) = R+w=R+u+iv (5.3)

where u and v are real valued

@ At the optimal choice, we obtain d + 1 orthogonality conditions
(useful later on):

(RY0Ru,uy=0, j=1,....d (5.4)
(R vy =0 (5.5)
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Action Expansion

@ Define the action:

Suld] = H[o] + wN[¢]
o Since e¢(- + x0) = Ry + w,
Sul@] = Sw[Rw + w]

(5.6)
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Action Expansion

@ Define the action:

Suld] = H[¢] + wN[¢]

o Since e¢(- + x0) = Ry + w,
Suld] = Su[Rw + w]

@ Taylor expanding:

(5.6)

ALS(t) = H[R, + w(t)] — H[R,] + wN[R, + w(t)] — N[Ru])

={Liu,uy+{L_v,v)+ r,,[w]
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Action Expansion

@ Define the action:

Suld] = H[¢] + wN[¢] (5.6)

o Since e¢(- + x0) = Ry + w,
Sul@] = Sw[Rw + w]
@ Taylor expanding:

ALS(t) = H[Ry + w(t)] — H[R,] + wN[R, + w(t)] = N[R.])
={Liu,uy+{L_v,v)+ r,,[w]

@ The linear operators are:

Ly =-V?+w— (20 +1)R> (5.7)
Lo =-V?+w—R¥ (5.8)

@ Remainder term, r, ,[w] = O(||W||$_,J{9) with § > 0
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Invariant Bound Strategy

@ Suppose we prove

Jullfn -

IwiZn = Iwlip < (Lyu, u) < [uff
[VIiEn = Iwlin —

[witp < (Lov,v) < |v]En
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Invariant Bound Strategy

@ Suppose we prove:

lullfn = Wi — [wlip < <Lau, u) < ulf
IvIEn = IwlEn = Iwliy < <Lov.v) < VI

@ Then, as before:
240 246
[wlin — Iwln = Iwlts — Iwlii® < A8.(0) S [wlin + [wlFi

and we obtain orbital stability
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Linear Operators

@ Recall the solitary wave equation:
—V?R, +wRq + R¥**1 =0
o We get that

L_R,=0 (5.9)
L.VR,=0 (5.10)
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Linear Operators
@ Recall the solitary wave equation:
—V?R, +wRq + R¥**1 =0
o We get that

L_R,=0 (5.9)
L.VR, =0 (5.10)

e Since R, > 0, this is the ground state of L_ , and {(L_-,-) > 0

@ Ind =1, since L, 0xR, = 0, is the only element of the kernel, and we
know there is a ground state, like L for KdV, with negative eigefnvalue
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Linear Operators

@ Recall the solitary wave equation:
~V?R, +wRq + R =0
o We get that

L_R,=0 (5.9)
L.VR, =0 (5.10)

e Since R, > 0, this is the ground state of L_ , and {(L_-,-) > 0

@ Ind =1, since L, 0xR, = 0, is the only element of the kernel, and we
know there is a ground state, like L for KdV, with negative eigefnvalue

@ For d = 2 — more challenging to show this is all that is in the kernel,
assume true — proven for d = 1,3 in [22,23], a general result available
in Kwong (89), [13], and also Chang et al. (07), [5]

@ L, also has ground state 1)y with negative eigenvalue \g
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Constraining the Bad Directions

Bad Directions
@ L_ has a one dimensional null space — one bad direction

@ L. has a d-dimensional null space and a negative eigenvalue — d + 1
bad directions
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Constraining the Bad Directions

Bad Directions
@ L_ has a one dimensional null space — one bad direction

@ L. has a d-dimensional null space and a negative eigenvalue — d + 1
bad directions

Constraints
@ From orbit minimization, have d + 1 constraints:

(R¥* vy =(RYVR,,uy =0 (5.11)

@ Need one more constraint — N[R + w] = N[R] leads to near
orthogonality
(Ro, uy = —3|wl. (5.12)

v
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Positivity of L_
Proposition

a_

= <f,R5"+1mf

L ffy>0
>=07”f”[_2=1< >

(5.13)
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Positivity of L_

Proposition

a_ = inf L_f,fY>0 5.13
<f,R5"“>=o,\|f||L2=1< % (5:13)

Proof: Since R, is the ground state of L_, a_ > 0. By Lagrange
multipliers:

(Lo —a-Df, = BRI
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Positivity of L_

Proposition

a_ = inf (L_f,fy>0
(FR7THY =0, 2=1

(5.13)

Proof: Since R, is the ground state of L_, a_ > 0. By Lagrange
multipliers:

(Lo —a-Df, = BRI
If «_ =0, then:

0=(L_R,,fy={Ry,L_f)= ﬁngffﬂ = B5=0

Then L_f, =0, and f,ocR,; but (R,,, R2*1) s 0; contradiction.
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Positivity of L_

Proposition

a_ = inf L_f,fY>0 5.13
<f,R£"“>=o,\|f||L2=1< % (5:13)

Proof: Since R, is the ground state of L_, a_ > 0. By Lagrange
multipliers:

(Lo —a-Df, = BRI
If «_ =0, then:

0=(L_R,,fy={Ry,L_f)= ﬂJRfJ"” = B5=0

Then L_f, =0, and f,ocR,; but (R,,, R2*1) 5 0; contradiction.
Also, (L_f,f) 2 |f|?, if we satisfy the orthogonality condition
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Non-negativity of L,

Proposition

If LNR,] >0 and ker(L;) = {VR,,} and there is only one negative
eigenvalue, then

(e i f <L+f, f>=0

= n
<faRUJ>7”f”L2=1
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Non-negativity of L,

Proposition

If LNR,] >0 and ker(Ly) = {VR,} and there is only one negative
eigenvalue, then

inf (L f,f)=0

oy = n
<faRw>7”f”L2=1

Proof: This is the same as in the case of KdV.
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Non-negativity of L,

Proposition

If LNR,] >0 and ker(Ly) = {VR,} and there is only one negative
eigenvalue, then

inf (L f,f)=0

oy = n
<faRw>7”f”L2:1

Proof: This is the same as in the case of KdV.

If f L R2°VR,, too, we obtain positivity, and the proof is completed in the
same way as KdV.
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VK Condition

@ Using the scaling:

2
HRw”%Z =w
@ Increasing for o < 2/d; orbitally stable

d
= | R 2

(5.14)
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Negative Eigenvalue Count
o CLAIM:

(D*J[RIf,f)y = ag{Lif,fy+a{p®xf,fy—a(R® Rf,f) (5.15)

with a; > 0 for all f
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Negative Eigenvalue Count
o CLAIM:

(D*J[RIf,f)y = ag{Lif,fy+a{p®xf,fy—a(R® Rf,f) (5.15)

with a; > 0 for all f
® R is a minimizer of J: (D2J[R]f,f) >0
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Negative Eigenvalue Count
o CLAIM:

(D*J[RIf,f)y = ag{Lif,fy+a{p®xf,fy—a(R® Rf,f) (5.15)
with a; > 0 for all f
® R is a minimizer of J: (D2J[R]f,f) >0
@ Hence:
(Lif F)+a{p®xf,f)=0 (5.16)
a rank 1 perturbation of L,
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Negative Eigenvalue Count
o CLAIM:

(D*J[RIf,f)y = ag{Lif,fy+a{p®xf,fy—a(R® Rf,f) (5.15)
with a; > 0 for all f
® R is a minimizer of J: (D2J[R]f,f) >0
@ Hence:
(Lif F)+a{p®xf,f)=0 (5.16)
a rank 1 perturbation of L,

@ Suppose there were two negative eigenvalues: there exists
(v, 1) # (0,0) such that

X, aotho + a1tp1) =0 (5.17)
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Negative Eigenvalue Count
o CLAIM:
(D*J[RIf,f)y = ag{Lif,fy+a{p®xf,fy—a(R® Rf,f) (5.15)

with a; > 0 for all f
® R is a minimizer of J: (D2J[R]f,f) >0
@ Hence:
(Lif, f)+ a1 {p®xf,f)=0 (5.16)
a rank 1 perturbation of L

@ Suppose there were two negative eigenvalues: there exists
(v, 1) # (0,0) such that

X, aotho + a1tp1) =0 (5.17)

o Contradiction:

<L+(Oéo¢0 + all/Jl), aoto + a1¢1> = )\00{% + )\104% <0 (5.18)
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@ Extensions
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Generalized Problems
e For more general NLS/GP:

i0:¢ = =26 + V(x)6 + f(|6]*)¢
the associated Ly are:

Ly = —V?+ V(x) +w— f(R?) — 2R>f'(R?)
L =-V?+V(x)+w-—f(R?)
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Generalized Problems
e For more general NLS/GP:

i0:¢ = =26 + V(x)6 + f(|6]*)¢
the associated Ly are:

Ly = —V?+ V(x) +w— f(R?) — 2R>f'(R?)
L =-V?+V(x)+w-—f(R?)

@ Again, need to show that (Lie,e) >0
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Generalized Problems
e For more general NLS/GP:

i0r) = =V + V(x)¢ + f(|6]*)¢ (6.1)
the associated Ly are:

Ly = —V?+ V(x) +w— f(R?) —2R2f'(R?) (6.2)
L. =—-V?+ V(x)+w— f(R?) (6.3)

@ Again, need to show that (Lie,e) >0

@ If the ground state is unique and L has favorable spectral properties
(i.e., a single negative eigenvalue and controlled kernel), then

d
VIR, >0 (6.4)

implies orbital stability
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Generalized Problems
e For more general NLS/GP:

i0r) = =V + V(x)¢ + f(|6]*)¢ (6.1)
the associated Ly are:

Ly = —V?+ V(x) +w— f(R?) —2R2f'(R?) (6.2)
L. =—-V?+ V(x)+w— f(R?) (6.3)

@ Again, need to show that (Lie,e) >0

@ If the ground state is unique and L has favorable spectral properties
(i.e., a single negative eigenvalue and controlled kernel), then

d
VIR, >0 (6.4)

implies orbital stability
@ V/(x) often breaks the translation symmetry
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Generalized Problems
e For more general NLS/GP:

i0:d = =V?¢ + V(x)¢ + F(|¢]*)6 (6.1)

the associated Ly are:
Ly = —V?+ V(x) +w— f(R?) — 2R>f'(R?) (6.2)
L =-V?+V(x)+w-—f(R?) (6.3)

@ Again, need to show that (Lie,e) >0

@ If the ground state is unique and L has favorable spectral properties
(i.e., a single negative eigenvalue and controlled kernel), then

d
VIR, >0 (6.4)

implies orbital stability
@ V/(x) often breaks the translation symmetry
@ Computation of spectra of discretized L4 is an option
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Generalized Framework

@ A complementary methodology is due to Grillakis, Shatah, & Strauss
(87, 90), [10,11,12,20]
@ GSS has two advantages:

» It directly predicts instability of solitary waves

» It permits us to address solitary wave type solutions with more than
one parameter (i.e. ¢ for gkdV and w for NLS/GP)

» Example: gDNLS

g + "|¢|2g¢x + ¢ =0 (6-5)

has a two parameter, (w, ¢), family of solitary wave solutions — studied
in Liu, Simpson & Sulem (13), [15]

@ GSS still requires the equivalent spectral analysis of L;

n(L) = p(dp; Qi(p))) = Orbital Stability (6.6)
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Asymptotic Stability

@ The solitary wave would be asymptotically stable if, in an appropriate
distance,
d(¢o, R,) <6 = tIim d'(¢(t),R.,) =0 (6.7)

—00

where the parameter, |w, —w| < €
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Asymptotic Stability

@ The solitary wave would be asymptotically stable if, in an appropriate
distance,

d(¢o, Rw) <8 = lim d'(¢(t), Ru.) =0 (6.7)

—00
where the parameter, |w, —w| < €

@ Decomposition into a finite dimensional system + infinite dimensional
perturbation:

o(t) = @OFOR () (x — x0(t)) + w(x, t) (6.8)
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Asymptotic Stability

@ The solitary wave would be asymptotically stable if, in an appropriate
distance,

d(go, Ru) <0 = lim d'(¢(t),R...) = 0 (6.7)

—00
where the parameter, |w, —w| < €

@ Decomposition into a finite dimensional system + infinite dimensional
perturbation:

o(t) = @OFOR () (x — x0(t)) + w(x, t) (6.8)

o Studied for gKdV by Pego & Weinstein (92,94), [17, 18], Martel &
Merle (01, )
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Asymptotic Stability

@ The solitary wave would be asymptotically stable if, in an appropriate
distance,

d(go, Ru) <0 = lim d'(¢(t),R...) = 0 (6.7)

—00
where the parameter, |w, —w| < €

@ Decomposition into a finite dimensional system + infinite dimensional
perturbation:

o(t) = @OFOR () (x — x0(t)) + w(x, t) (6.8)

o Studied for gKdV by Pego & Weinstein (92,94), [17, 18], Martel &
Merle (01, )

@ For NLS, see Buslaev & Perel'man (93, 95), Soffer & Weinstein (90,
92), Gustafson, Nakanishi & Tsai (04), Cuccagna (11),...
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Gideon Simpson (Drexel) Solitary Waves May 2022 86 /86



Asymptotic Stability

@ The solitary wave would be asymptotically stable if, in an appropriate
distance,

d(go, Ru) <0 = lim d'(¢(t),R...) = 0 (6.7)

—00
where the parameter, |w, —w| < €

@ Decomposition into a finite dimensional system + infinite dimensional
perturbation:

o(t) = WIOOIR ) (x — (1) + wix,t)  (6.8)
o Studied for gKdV by Pego & Weinstein (92,94), [17, 18], Martel &

Merle (01, )

@ For NLS, see Buslaev & Perel'man (93, 95), Soffer & Weinstein (90,
92), Gustafson, Nakanishi & Tsai (04), Cuccagna (11),...

@ More detailed analysis of the spectrum of the linearized problem

@ Solitary wave interactions...
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