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Experiment that motivated our study: 

Spatial beam self-cleaning in a multimode optical fiber 

10m Limoges – Dijon – Brescia consortium 

Krupa, Tonello, Shalaby, Fabert, Barthélémy, Millot, Wabnitz, Couderc, Nature Photonics 11, 237 (2017) 
 

Cornell Univ.  

Wright, Liu, Nolan, Li, Christodoulides, Wise, Nature Photonics 10, 771 (2016) 

Intensity  

(outpuf fiber) 

Conceptually simple experiment (multimode fiber: 120 modes, ~10-20 meters, ns pulses) 
 

 

 

 

 

 

 

Beam cleaning is due to a conservative Kerr nonlinearity (i.e. four-wave interaction)  

 no gain/loss, no thermal heat bath 

 can be described by a generalized NLS equation  

laser camera 

multimode fiber 

 Is this effect of beam self-cleaning related to wave condensation ? 
 

 Impact of disorder : light propagation is affected by bending and stretching  

    of the fiber introduce linear random coupling among the modes 



Experimental results that motivated our study: 

Spatial beam self-cleaning in a multimode optical fiber 

Outline of the talk 

1.- Reminder of wave condensation in a homogeneous system 
 

2.- Reminder of wave condensation in a confined trapping potential 
 

3.- Impact of a weak disorder on wave condensation 

      acceleration of the rate of thermalization & condensation 
  

4.- Experiments: Observation of the transition to light condensation 
 

5.- Impact of strong disorder (genuine random mode coupling)  

      unveils the interplay of nonlinearity and disorder 

10m 



kx ky 

0 
0 

10-4 


22 zi

kx ky 
0 0 

2
),0(~ kz 

 Condensation results from the natural thermalization to the  

     thermodynamic equilibrium state 

Initial condition (random spectrum) Thermodynamic Equilibrium 
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Zakharov, Nazarenko --  Physica D (2005) 

Connaughton, Josserand, Picozzi, Pomeau, Rica  --  PRL (2005) 

Krstulovic, Brachet --  PRL (2011) ; PRE (2011) 

2D NLS 

Reminder: Condensation of classical waves  



Reminder: Wave condensation is a phase transition 

D = 3 
‘optics language’: 

Fraction of  
power in the 
fundamental 

mode 

Connaughton, Josserand, Picozzi, Pomeau, Rica -- PRL (2005) 

= const 

Energy or Hamiltonian  

(‘temperature’) 

n0/N 

‘optics language’: power 
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Reminder: Wave condensation requires a frequency cut-off 
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 However: UV catastrophe can be regularized by introducing a frequency cut-off  kc 

       effective physical frequency cut-off  kc arises in an optical waveguide  

  /1 c

 Only transient process of far from equilibrium condensation is accessible in an optical exp. 
 

                         Sun, Jia, Barsi, Rica, Picozzi, Fleischer, Nat. Phys. 8, 471 (2012)               

                          Santic, Fusaro, Salem, Garnier, Picozzi, Kaiser  PRL 120, 055301 (2018) 



Reminder: Wave condensation in a trap V(r) 

(D = 2) 

Linear, E Nonlinear, U 

Finite number of modes of the waveguide introduces an ‘effective frequency cut-off’ 

      Revisit wave turbulence theory with a trapping potential 

Speckle beam guided by a  

truncated parabolic potential 

waveguide config. 
(multimode fiber) 



Reminder: Wave condensation in a trap V(r) 

Weakly nonlinear regime     &     Continuous limit: 

S. Nazarenko, Wave Turbulence (Springer, 2011) WT theory: 

Aschieri, Garnier, Michel, Doya, Picozzi  --  PRA (2011) 



: H-theorem 

Reminder: Wave condensation in a trap V(r) 

Aschieri, Garnier, Michel, Doya, Picozzi  --  PRA (2011) 

Rayleigh-Jeans: 

= const         ‘power’  

= const     ‘energy’  

 No heat bath: (T, ) Lagrange multipliers related to the conservation (E, N) 

 Because of finite number of modes : (N, E) do not diverge at RJ equilibrium 



Aschieri, Garnier, Michel, Doya, Picozzi  --  PRA (2011) 

Parabolic trap:  Wave condensation takes place in the thermodynamic limit in 2D 

Reminder: Wave condensation in a trap V(r) 

IC random phases 
Critical energy to condensation properly defined 

 Only depends on the geometry of the waveguide 

Energy E 

Ec 

We have a description of light condensation in a multimode fiber 

 However…..! 



Spatial beam self-cleaning in a multimode optical fiber 

  Krupa et al., Nature Photon. 11, 237 (2017)   Wright et al.,  Nature Photon. 10, 771 (2016) 

Limoges – Dijon - Brescia consortium Cornell Un.  

The theory of light condensation in MMFs does NOT explain these experiments:  

Propagation lengths required to achieve condensation are too much important 

10m 

Coherent initial condition: 

n0 

 fiber length ~ 12m 

  Oscillatory behavior 

  Strong phase-correlation 

 Freezes the thermalization process 

 No Condensation with the short  

      propagation length available in the 

      experiments 

 Need mechanism that breaks the strong the phase-correlation  



Spatial beam self-cleaning in a multimode optical fiber 

 Impact of disorder : bending and stretching of the fiber introduce  

    linear random coupling among the modes (polar. random fluctuations) 

 Disorder breaks the coherent phase dynamics among the modes 

To understand these experiments: Important ingredient: 

  Krupa et al., Nature Photon. 11, 237 (2017)   Wright et al.,  Nature Photon. 10, 771 (2016) 

Limoges – Dijon - Brescia collaboration Cornell Un.  

10m 

Interplay Disorder & Nonlinearity: 

 vast subject that covers many research fields 

 Thermalization vs Anderson localization ? 

     Wang, Fu, Zhang, Zhao, PRL 124, 186401 (2020)  

     Nazarenko, Soffer, Tran, Entropy 21, 823 (2019)  

 

 Here: disorder depends on (‘time’) z variable 

     No Anderson localization 

 Main result: Disorder accelerates the dynamics of thermalization 



: effective strength of disorder : fundamental eigenvalue 

Wave turbulence kinetic equation accounting for weak disorder 

Conserves: 

H-theorem:                                     

modal NLS eqn : 

Weak disorder is the leading order contribution that originates in polarization random fluctuations 

- Key point: Conservative disorder introduces an effective dissipation (Furutsu-Novikov theorem)  

   modifies the regularization of wave resonances 



Significant acceleration  

of thermalization  

mediated by disorder 

~ 10-3 

The characteristic lengths (`times') of thermalization in the presence and the absence 

of disorder scale as: 

typical experimental parameters 

: Kerr nonlinearity 

: effective strength of disorder : fundamental eigenvalue 

Conserves: 

H-theorem:                                     

Wave turbulence kinetic equation accounting for disorder 



frequency resonance (      mode eigenvalue) 

4th moment 6th moment disorder 

- Equation for 4th order moment is governed by an effective forced-damped oscillator eqn 

- Derived WT kinetic equation accounting for a structural disorder of the nl medium 

   dominant contribution of polarization fluctuations (Agrawal’s model: Mumtaz et al JLT 2013) 

- Key point: Conservative disorder introduces an effective dissipation (Furutsu-Novikov theorem)  

   modifies the regularization of wave resonances 

only exact resonances can contribute  

 Singularity of a wave resonance is regularized by the dissipation due to disorder 

: 

: 

- Discrete wave turbulence 

a) 

b)  rapid oscillating phase  

 vanishing contribution of quasi-resonances 

Disorder modifies the regularization of wave resonances 

decays on a length <<  



Numerical simulations vs Theory 

  Coherent regime of modal interaction  no condensation Without disorder: 

n0 

With disorder: 

kinetic eqn 

 Breaks the coherent regime  Fast Thermalization & Condensation 

Kinetic eqn 

NLS eqn 

No adjustable parameters 

NLS 



Phase transition to condensation 

No adjustable parameters 

KE 

NLS 

 Energy flows to high-order modes (direct cascade) 

 Power flows to the fudamental mode (inverse cascade) 

numerics 

theory 

Condensate fraction at equilibrium 

phase transition 

z=15m 

Thermalization is characterized by 

 Energy equipartition: 



Scaling of acceleration of thermalization 
 by decreasing disorder  

Kinetic eqn 

NLS eqn 

No adjustable parameters 

 = 2.6m-1 

 = 2.6x4m-1 

 = 2.6x16m-1 

The lower the magnitude of disorder    the faster the thermalization 
 

Because the singularity of a wave resonance is regularized by the dissipation due to disorder 
 



L = 20cm 

L = 13m 

Experiment  realized in Dijon by   K. Baudin, A. Fusaro, K. Krupa, G. Millot 

input 

output 

energy E (‘temperature’) 

fiber length L =13m, fiber radius R = 26m,  2x120 modes, N =7kW 

Experimental observation of the transition to condensation 

 diffuser: vary the energy                              while keeping constant  

     

 weakly nonlinear regime: 

= const 

 verified conservation of (E, N) during the propagation through the fiber   

(No coherent structures) 



Condensate contribution (fundamental mode) 

Experimental measurements 

Incoherent contribution (all modes p  0) 

sum of condensate and incoherent contributions 

L = 20cm 

L = 13m 

input 

output 

output 

= const 
energy E 

Preliminary study: compare single-shot measurements (i.e. speckle beam) with RJ equilibrium 

 But RJ eq. is a statistical distribution  comparison requires an average over the realizations 

Preliminary comparison with Rayleigh-Jeans equilibrium (single-shot) 



Condensate contribution (fundamental mode) 

Experimental measurements 

Incoherent contribution (all modes p  0) 

sum of condensate and incoherent contributions 

input 

Quantitative comparison with RJ theory: 
 Average over the experimental realizations for a given pair (N, E) 

 No adjustable parameters 

(N,E) measured experimentally 

: Hermite-Gauss modes  

  fixed by the MMF in the exp. 

 determine the unique pair (,T) 

RJ intensity: 



Direct observations of thermalization to a Rayleigh–Jeans distribution in multimode optical fibres 

Pourbeyram, Sidorenko, Wu, Bender, Wright, Christodoulides, and Wise 

Nature Physics – April 2022 

Injection of coherent beam with short fiber length (~1m) 

Injection of speckle beam with short fiber length (~1m) discrepancy for higher order modes 

 For short fiber length the impact of disorder is severely limited ! 



More precise comparison with a modal decomposition 

 No adjustable parameters (!) 

Gerchberg-Saxton algorithm  

 allows to retrieve the phase profile  

from NF & FF intensity distributions  

measured experimentally 

- Injection of speckle beams with an appropriate  

averaging within small energy intervals  
 

- Long fiber length (12m)  enhanced impact  

of disorder 

Indexes the mode group: 15 groups of degenerate modes 



Theory: no adjustable parameters  

(p, M = 120) fixed by the fiber used in the 

experiment 

fiber length L =13m, fiber radius R = 26m,  2x120 modes, P =7kW 

 divergence RJ eq.  

 Macroscopic populat. fundamental mode 

 Phase transition to condensation  

chemical potential 

By decreasing the energy E :  

condensate fraction 

RJ theory: 

Observation of the transition to Rayleigh-Jeans condensation 



Thermodynamics of classical condensation: Specific heat 

 Behavior of the specific heat across the transition to condensation 

quantum notion of frozen degrees  

of freedom (3rd law thermodynamics) 

Quantum Bose-Einstein transition: Bose gas behaves  

as a classical gas:  

Energy equipartition 

Classical condensation of waves: 

Equipartition of power 

 peculiar feature 

    of finite nb modes  

Equipartition of energy: 

cusp (thermod. limit) 
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Wu, Hassan, Christodoulides, Nature Photonics 13, 776 (2019) 

Thermodynamic theory of highly multimoded nonlinear optical systems  



Conclusion 

 References for this work:    

  Fusaro, Garnier, Krupa, Millot, Picozzi 

     PRL 122, 123902 (2019) 
 

  Garnier, Fusaro, Baudin, Michel, Krupa, Millot, Picozzi 

     PRA 100, 053835 (2019) 
 

  Baudin, Fusaro, Krupa, Garnier, Rica, Millot, Picozzi 

     PRL 125, 244101 (2020) 
 

  Baudin, Fusaro, Garnier, Krupa, Carusotto, Rica, Millot, Picozzi 

     EPL134, 14001 (2021) 

Reported experimental observation of RJ condensation of classical light 

 Quantitative agreement between exp. results & RJ equilibrium theory 

Perspective:  Finite number of modes  Existence of upper bound for the energy (Emax)   

     Entails the existence of Negative Temperature equiibrium states : T < 0 

 Special thanks to the students K. Baudin, A. Fusaro, N. Berti 

  Derived a WT kinetic eqn accounting for the presence of weak disorder (weak random mode coupling)) 

   Rate of Thermalization & Condensation is significantly increased by weak disorder 

Turbulence in MMFs  Discrete turbulence 

 parabolic MMFs : Lot of exact resonances  

 Non-parabolic (step-index) MMFs: Only poorly efficient quasi-resonances 

 Freezing of thermalization & condensation  Explain why No beam cleaning in step-index MMFs 

Derivation of a kinetic eqn in the presence of strong disorder   interplay disorder & nonlinearity 

 quantitative agreement with simulations 


