

Condensation of optical waves and the role of disorder

Antonio Picozzi

CNRS -- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Dijon

Experiments & Simulations

Kilian Baudin (*ICB*) Nicolas Berti (*ICB*) Adrien Fusaro (*ICB*) Katarzyna Krupa (*ICB*) Claire Michel (*Un. Nice*) Valérie Doya (*Un. Nice*) Guy Millot (*ICB*) <u>Theory</u> Josselin Garnier (Ecole Polytech. Paris) Sergio Rica (Un. Ibanez, Chile)

Waves & Complexity school -- Porquerolles, May 15-20, 2022

Experiment that motivated our study: Spatial beam self-cleaning in a multimode optical fiber

Limoges – Dijon – Brescia consortium

Krupa, Tonello, Shalaby, Fabert, Barthélémy, Millot, Wabnitz, Couderc, Nature Photonics 11, 237 (2017)

Cornell Univ.

Wright, Liu, Nolan, Li, Christodoulides, Wise, Nature Photonics 10, 771 (2016)

Conceptually simple experiment (multimode fiber: 120 modes, ~10-20 meters, ns pulses)

- Beam cleaning is due to a <u>conservative Kerr nonlinearity</u> (i.e. four-wave interaction)
 - \rightarrow no gain/loss, no thermal heat bath
 - \rightarrow can be described by a generalized NLS equation

→ Is this effect of beam self-cleaning related to wave condensation ?

→ Impact of disorder : light propagation is affected by bending and stretching of the fiber introduce linear random coupling among the modes Experimental results that motivated our study: Spatial beam self-cleaning in a multimode optical fiber

Outline of the talk

- 1.- Reminder of wave condensation in a homogeneous system
- 2.- Reminder of wave condensation in a confined trapping potential
- 3.- Impact of a *weak disorder* on wave condensation
 → acceleration of the rate of thermalization & condensation
- 4.- Experiments: Observation of the transition to light condensation
- 5.- Impact of strong disorder (genuine random mode coupling)
 → unveils the interplay of nonlinearity and disorder

Reminder: Condensation of classical waves

2D NLS $i\partial_z \psi = -\nabla_{\!\!\perp}^2 \psi + |\psi|^2 \psi$

→ Condensation results from the natural thermalization to the thermodynamic equilibrium state

Zakharov, Nazarenko -- Physica D (2005) Connaughton, Josserand, Picozzi, Pomeau, Rica -- PRL (2005) Krstulovic, Brachet -- PRL (2011) ; PRE (2011)

Reminder: Wave condensation is a phase transition

Reminder: Wave condensation requires a frequency cut-off

→ Only transient process of *far from equilibrium condensation* is accessible in an optical exp.
 Sun, Jia, Barsi, Rica, Picozzi, Fleischer, Nat. Phys. 8, 471 (2012)
 → Santic, Fusaro, Salem, Garnier, Picozzi, Kaiser PRL 120, 055301 (2018)

→ However: UV catastrophe can be regularized by introducing a frequency cut-off k_c → effective physical frequency cut-off k_c arises in an optical waveguide

 $i\partial_z \psi = -\alpha \nabla^2 \psi + V(\mathbf{r})\psi + \gamma |\psi|^2 \psi$ (D = 2)

Speckle beam guided by a truncated parabolic potential

Finite number of modes of the waveguide introduces an 'effective frequency cut-off' Revisit wave turbulence theory with a trapping potential

$$i\partial_{z}\psi = -\alpha\nabla^{2}\psi + V(\mathbf{r})\psi + \gamma|\psi|^{2}\psi \qquad \psi(\mathbf{r},z) = \sum_{m} c_{m}(z)u_{m}(\mathbf{r})\exp(-i\beta_{m}z)$$

$$i\partial_{z}a_{m} = \beta_{m}a_{m} + \gamma\sum_{p,q,s} W_{mpqs}a_{p}a_{q}^{*}a_{s} \qquad a_{m}(z) = c_{m}(z)\exp(-i\beta_{m}z)$$

$$W_{mpqs} = \int u_{m}^{*}(\mathbf{r})u_{p}(\mathbf{r})u_{q}^{*}(\mathbf{r})u_{s}(\mathbf{r})d\mathbf{r} \qquad n_{m}(z) = \left\langle \left| \int \psi(\mathbf{r},z)u_{m}^{*}(\mathbf{r})d\mathbf{r} \right|^{2} \right\rangle = \left\langle |c_{m}(z)|^{2} \right\rangle$$

WT theory: S. Nazarenko, *Wave Turbulence* (Springer, 2011) Weakly nonlinear regime & Continuous limit: $V_0/\beta_0 \gg 1$

$$\begin{split} \partial_{Z}\tilde{n}_{\kappa} &= \frac{4\pi\gamma^{2}}{\beta_{0}^{6}} \iiint d\kappa_{1}d\kappa_{2}d\kappa_{3}\delta\big(\tilde{\beta}_{\kappa_{1}} + \tilde{\beta}_{\kappa_{3}} - \tilde{\beta}_{\kappa_{2}} - \tilde{\beta}_{\kappa}\big) \\ &\times \left|\tilde{W}_{\kappa\kappa_{1}\kappa_{2}\kappa_{3}}\right|^{2}\tilde{n}_{\kappa}\tilde{n}_{\kappa_{1}}\tilde{n}_{\kappa_{2}}\tilde{n}_{\kappa_{3}}\big(\tilde{n}_{\kappa}^{-1} + \tilde{n}_{\kappa_{2}}^{-1} - \tilde{n}_{\kappa_{1}}^{-1} - \tilde{n}_{\kappa_{3}}^{-1} \\ &+ \frac{8\pi\gamma^{2}}{\beta_{0}^{2}}\int d\kappa_{1}\delta\big(\tilde{\beta}_{\kappa_{1}} - \tilde{\beta}_{\kappa}\big)\big|\tilde{U}_{\kappa\kappa_{1}}(\tilde{n})\big|^{2}(\tilde{n}_{\kappa_{1}} - \tilde{n}_{\kappa}) \\ \tilde{U}_{\kappa\kappa_{1}}(\tilde{n}) &= \frac{1}{\beta_{0}^{2}}\int d\kappa' \tilde{W}_{\kappa\kappa_{1}\kappa'\kappa'}\tilde{n}_{\kappa'} \\ \tilde{U}_{\kappa\kappa_{1}}(\tilde{n}) &= n_{[k/\beta_{0}]}(z) \\ &\kappa &= \beta_{0}(m_{x}, m_{y}) \end{split}$$

Aschieri, Garnier, Michel, Doya, Picozzi -- PRA (2011)

$$\begin{split} \partial_{Z}\tilde{n}_{\kappa} &= \frac{4\pi\gamma^{2}}{\beta_{0}^{6}} \iiint d\kappa_{1}d\kappa_{2}d\kappa_{3}\delta\big(\tilde{\beta}_{\kappa_{1}} + \tilde{\beta}_{\kappa_{3}} - \tilde{\beta}_{\kappa_{2}} - \tilde{\beta}_{\kappa}\big) \\ &\times \left|\tilde{W}_{\kappa\kappa_{1}\kappa_{2}\kappa_{3}}\right|^{2}\tilde{n}_{\kappa}\tilde{n}_{\kappa_{1}}\tilde{n}_{\kappa_{2}}\tilde{n}_{\kappa_{3}}\big(\tilde{n}_{\kappa}^{-1} + \tilde{n}_{\kappa_{2}}^{-1} - \tilde{n}_{\kappa_{1}}^{-1} - \tilde{n}_{\kappa_{3}}^{-1}\big) \\ &+ \frac{8\pi\gamma^{2}}{\beta_{0}^{2}} \int d\kappa_{1}\delta\big(\tilde{\beta}_{\kappa_{1}} - \tilde{\beta}_{\kappa}\big)\big|\tilde{U}_{\kappa\kappa_{1}}(\tilde{n})\big|^{2}(\tilde{n}_{\kappa_{1}} - \tilde{n}_{\kappa}) \end{split}$$

$$\begin{split} \bar{N} &= \beta_0^{-2} \int d\kappa \tilde{n}_{\kappa} = const \quad \text{`power'} \\ E &= \beta_0^{-2} \int d\kappa \tilde{\beta}_{\kappa} \tilde{n}_{\kappa} = const \quad \text{`energy'} \\ \mathcal{S}(z) &= \beta_0^{-2} \int d\kappa \ln(\tilde{n}_{\kappa}) : \text{H-theorem } dS/dz \ge 0 \\ \underline{Rayleigh-Jeans:} \end{split}$$

 $\sim eq$

→ No heat bath: (T, μ) Lagrange multipliers related to the conservation (*E*, *N*) → Because of finite number of modes : (*N*, *E*) do not diverge at RJ equilibrium

Aschieri, Garnier, Michel, Doya, Picozzi -- PRA (2011)

Parabolic trap: Wave condensation takes place in the thermodynamic limit in 2D

→ We have a description of light condensation in a multimode fiber → However.....!

Aschieri, Garnier, Michel, Doya, Picozzi -- PRA (2011)

Spatial beam self-cleaning in a multimode optical fiber

- → Oscillatory behavior
- → Strong phase-correlation
- \rightarrow Freezes the thermalization process
- → No Condensation with the short propagation length available in the experiments

 \rightarrow Need mechanism that breaks the strong the phase-correlation

Spatial beam self-cleaning in a multimode optical fiber

To understand these experiments: Important ingredient:

- Impact of disorder : bending and stretching of the fiber introduce linear random coupling among the modes (polar. random fluctuations)
 Disorder breaks the subgrapt phase dynamics among the modes
- \rightarrow Disorder breaks the coherent phase dynamics among the modes

Interplay Disorder & Nonlinearity:

- \rightarrow vast subject that covers many research fields
- → Thermalization vs Anderson localization ?
 [Wang, Fu, Zhang, Zhao, PRL 124, 186401 (2020)
 [Nazarenko, Soffer, Tran, Entropy 21, 823 (2019)
- → Here: disorder depends on ('time') z variable No Anderson localization

 \rightarrow Main result: Disorder accelerates the dynamics of thermalization

Wave turbulence kinetic equation accounting for weak disorder

Weak disorder is the leading order contribution that originates in polarization random fluctuations - Key point: Conservative disorder introduces an effective dissipation (Furutsu-Novikov theorem)

 \rightarrow modifies the regularization of wave resonances

$$\Rightarrow \text{ modal NLS eqn: } i\partial_{z}A_{p} = \beta_{p}A_{p} + W_{p}(z)A_{p} - \gamma F_{p}(A) \\ L_{disor} = (\Delta\beta)^{-1} \ll L_{kin} \\ \downarrow n_{p}(z) = \langle |A_{p}(z)|^{2} \rangle \\ \downarrow n_{p}(z) = \langle |A_{p}(z)|^{2} \rangle \\ \Rightarrow \begin{cases} \partial_{z}n_{p}(z) = \frac{2\gamma^{2}}{9\Delta\beta} \sum_{q,l,m} \delta^{K}_{\beta_{q}+\beta_{l}-\beta_{m}-\beta_{p}} |S_{pqlm}|^{2}M(n) + \frac{16\gamma^{2}}{27\Delta\beta} \sum_{q} \delta^{K}_{\beta_{q}-\beta_{p}} |s_{pq}(n)|^{2}(n_{q}-n_{p}) \\ \swarrow M(n) = n_{q}n_{l}n_{p} + n_{q}n_{l}n_{m} - n_{m}n_{p}n_{l} - n_{m}n_{p}n_{q} \\ s_{pq}(n) = \sum_{m'} S_{pqm'm'}n_{m'} \\ \Delta\beta: \text{ effective strength of disorder} \qquad \beta_{0}: \text{ fundamental eigenvalue} \end{cases}$$

 $\begin{bmatrix} \text{Conserves:} & N = \sum_{p} n_{p}(z) \\ & E = \sum_{p} \beta_{p} n_{p}(z) \\ \end{bmatrix}$ $H\text{-theorem:} S(z) = \sum_{p} \log (n_{p}(z)) \Rightarrow n_{p}^{eq} = T/(\beta_{p} - \mu)$

Wave turbulence kinetic equation accounting for disorder

$$\rightarrow i\partial_{z}A_{p} = \beta_{p}A_{p} + W_{p}(z)A_{p} - \gamma F_{p}(A) : \text{Kerr nonlinearity} \qquad L_{disor} = (\Delta\beta)^{-1} \ll L_{kin}$$

$$\sqrt{n_{p}(z)} = \langle |A_{p}(z)|^{2} \rangle$$

$$\left\{ \begin{array}{l} \partial_{z}n_{p}(z) &= \frac{2\gamma^{2}}{9\Delta\beta} \sum_{q,l,m} \delta^{K}_{\beta q} + \beta_{l} - \beta_{m} - \beta_{p} |S_{pqlm}|^{2}M(n) + \frac{16\gamma^{2}}{27\Delta\beta} \sum_{q} \delta^{K}_{\beta q} - \beta_{p} |s_{pq}(n)|^{2}(n_{q} - n_{p}) \\ M(n) &= n_{q}n_{l}n_{p} + n_{q}n_{l}n_{m} - n_{m}n_{p}n_{l} - n_{m}n_{p}n_{q} \\ s_{pq}(n) &= \sum_{m'} S_{pqm'm'}n_{m'} \\ \Delta\beta: \text{ effective strength of disorder} \qquad \beta_{0}: \text{ fundamental eigenvalue} \end{array} \right.$$

$$\left\{ \begin{array}{c} \text{Conserves:} \quad N = \sum_{p} n_{p}(z) \\ E &= \sum_{p} \beta_{p}n_{p}(z) \\ H \text{-theorem:} S(z) &= \sum_{p} \log(n_{p}(z)) \Rightarrow n_{p}^{eq} = T/(\beta_{p} - \mu) \end{array} \right.$$

The characteristic lengths (`times') of thermalization in the presence and the absence of disorder scale as:

$$\label{eq:chi} \begin{split} \hline{\zeta_{th}^{disor}/\zeta_{th}^{ord}\sim \Delta\beta/\beta_0} &\sim \mathbf{10^{-3}} \ll 1 \\ \\ \swarrow \\ \end{split}$$
 typical experimental parameters

Significant acceleration of thermalization mediated by disorder

Disorder modifies the regularization of wave resonances

- Derived WT kinetic equation accounting for a structural disorder of the nl medium
 - → dominant contribution of polarization fluctuations (Agrawal's model: Mumtaz et al JLT 2013)
- Key point: Conservative disorder introduces an effective dissipation (Furutsu-Novikov theorem)
 → modifies the regularization of wave resonances
- Equation for 4th order moment is governed by an effective forced-damped oscillator eqn

4th moment disorder 6th moment

$$\partial_z J_{qlmp} = (-6\Delta\beta + i\Delta\omega_{qlmp})J_{qlmp} + i\gamma \langle Y_{qlmp} \rangle$$

 $\Delta\omega_{qlmp} = \beta_q + \beta_l - \beta_m - \beta_p$ frequency resonance (β_p mode eigenvalue)
 $L_{lin} = \beta_0^{-1} \ll L_{disor} = (\Delta\beta)^{-1} \ll L_{nl}$

- Discrete wave turbulence

$$\begin{split} \beta_0 &\simeq 5 \times 10^3 \mathrm{m}^{-1} \rightarrow \min(|\Delta \omega_{qlmp}|) = \beta_0 \gg 1/L_{nl} \quad \text{only exact resonances can contribute} \\ \mathbf{a}) \; \Delta \omega_{qlmp} = 0 : \; L_{disor} \; = \; (\Delta \beta)^{-1} \; \ll L_{nl} \\ G(z) &= H(z) \exp(i\Delta \omega_{qlmp} z - 6\Delta \beta z) \; \text{ decays on a length } << L_{nl} \\ J_{qlmp}(z) \; \simeq \; \frac{i\gamma}{6\Delta\beta} \left< Y_{qlmp} \right> (z) \end{split}$$

b) $\Delta \omega_{qlmp} \neq 0$: $L_{lin} = \beta_0^{-1} \ll L_{nl} \Rightarrow$ rapid oscillating phase \Rightarrow vanishing contribution of quasi-resonances

$$\longrightarrow \ \ J_{qlmp}(z) \simeq \frac{i\gamma}{6\Delta\beta} \left\langle Y_{qlmp} \right\rangle(z) \delta^K(\Delta\omega_{qlmp})$$

 \rightarrow Singularity of a wave resonance is regularized by the dissipation due to disorder

Numerical simulations vs Theory

<u>Without disorder</u>: \rightarrow Coherent regime of modal interaction \rightarrow no condensation

<u>With disorder</u>: \rightarrow Breaks the coherent regime \rightarrow Fast Thermalization & Condensation

Phase transition to condensation

Scaling of acceleration of thermalization

 \rightarrow by decreasing disorder $\Delta\beta$

The lower the magnitude of disorder \rightarrow the faster the thermalization Because the singularity of a wave resonance is regularized by the dissipation due to disorder

$$\partial_z n_p(z) = \frac{2\gamma^2}{9\Delta\beta} \sum_{q,l,m} \delta^K_{\beta_q+\beta_l-\beta_m-\beta_p} |S_{pqlm}|^2 M(\boldsymbol{n}) + \frac{16\gamma^2}{27\Delta\beta} \sum_q \delta^K_{\beta_q-\beta_p} |s_{pq}(\boldsymbol{n})|^2 (n_q-n_p)$$

Experimental observation of the transition to condensation

Experiment realized in Dijon by K. Baudin, A. Fusaro, K. Krupa, G. Millot

→ diffuser: vary the energy $E = \sum_{p} \beta_{p} |a_{p}|^{2}$ while keeping constant $N = \sum_{p} |a_{p}|^{2} = const$ → weakly nonlinear regime: $L_{lin} \simeq \beta_{0}^{-1} \sim 0.2 \text{mm} \ll L_{nl} \sim 0.5 \text{m}$ (No coherent structures)

 \rightarrow verified conservation of (E, N) during the propagation through the fiber

fiber length L =13m, fiber radius $R = 26\mu m$, 2x120 modes, N = 7kW

Preliminary comparison with Rayleigh-Jeans equilibrium (single-shot)

Preliminary study: compare single-shot measurements (i.e. speckle beam) with RJ equilibrium \rightarrow But RJ eq. is a statistical distribution \rightarrow comparison requires an average over the realizations

Quantitative comparison with RJ theory:

 \rightarrow <u>Average</u> over the experimental realizations for a given pair (*N*, *E*)

(N,E) measured experimentally
$\int N = \sum_{p} n_{p}^{eq}$
$E = \sum_{p} \beta_{p} n_{p}^{eq}$
$n_p^{eq} = T/(\beta_p - \mu)$
\rightarrow determine the unique pair (μ ,T)
$\int RJ$ intensity: $I^{eq}(r) = \sum n_p^{eq} u_p^2(r)$
$u_p(oldsymbol{r})$: Hermite-Gauss modes
fixed by the MMF in the exp.
→ No adjustable parameters

Experimental measurements Condensate contribution (fundamental mode) $I_{condens}(\mathbf{r}) = n_0 u_0^2(\mathbf{r})$ Incoherent contribution (all modes $p \neq 0$) $I_{incoh}(r) = \sum_{p\neq 0} n_p^{eq} u_p^2(r)$ sum of condensate and incoherent contributions Direct observations of thermalization to a Rayleigh–Jeans distribution in multimode optical fibres Pourbeyram, Sidorenko, Wu, Bender, Wright, Christodoulides, and Wise Nature Physics – April 2022

Injection of coherent beam with short fiber length (~1m)

Injection of speckle beam with short fiber length (~1m)

discrepancy for higher order modes

→ For short fiber length the impact of disorder is severely limited !

More precise comparison with a modal decomposition \rightarrow No adjustable parameters (!)

- Injection of speckle beams with an appropriate averaging within small energy intervals

- Long fiber length (12m) \rightarrow enhanced impact of disorder

Gerchberg-Saxton algorithm → allows to retrieve the phase profile from NF & FF intensity distributions measured experimentally

 $\begin{bmatrix}g=0,..,g_{max}-1 & \text{Indexes the mode group: 15 groups of degenerate modes}\\M=g_{max}(g_{max}+1)/2=120 \text{ modes}. \end{bmatrix}$

 $\begin{bmatrix} E_p = (\beta_p - \beta_0)n_p \\ \bar{E}_g = \beta_0 g \tilde{n}_g \end{bmatrix}$

Observation of the transition to Rayleigh-Jeans condensation

By decreasing the energy $E: \mu \rightarrow \beta_0^ \rightarrow$ divergence RJ eq. $n_p^{eq} = T/(\beta_p - \mu)$ \rightarrow Macroscopic populat. fundamental mode \rightarrow Phase transition to condensation

RJ theory:

$$\frac{n_0^{eq}}{N}(\mu) = \frac{1}{-(\mu - \beta_0) \sum_p (\beta_p - \mu)^{-1}},$$

$$\frac{E}{E_{\text{crit}}}(\mu) = \frac{\sum_p \frac{\beta_p}{\beta_p - \mu}}{(1 + (M - 1)/\varrho) \sum_p \frac{\beta_0}{\beta_p - \mu}},$$

$$\beta_p = \beta_0 (p_x + p_y + 1)$$

<u>Theory</u>: no adjustable parameters $(\beta_p, M = 120)$ fixed by the fiber used in the experiment

Thermodynamics of classical condensation: Specific heat

Wu, Hassan, Christodoulides, Nature Photonics 13, 776 (2019) Thermodynamic theory of highly multimoded nonlinear optical systems

\rightarrow Behavior of the specific heat across the transition to condensation

• Classical condensation of waves: $C_V = (\partial E/\partial T)_{N,M}$ $C_V(E) = M - \frac{\{\sum_p |\beta_p - \mu(E)|^{-1}\}^2}{\sum_p [\beta_p - \mu(E)]^{-2}}$

Conclusion

- Derived a WT kinetic eqn accounting for the presence of weak disorder (weak random mode coupling))
 → Rate of Thermalization & Condensation is significantly increased by weak disorder
- Turbulence in MMFs → *Discrete turbulence*
 - \rightarrow parabolic MMFs : Lot of exact resonances
 - → Non-parabolic (step-index) MMFs: Only poorly efficient quasi-resonances
 - → Freezing of thermalization & condensation → Explain why No beam cleaning in step-index MMFs
- Reported experimental observation of RJ condensation of classical light
 → Quantitative agreement between exp. results & RJ equilibrium theory
- Derivation of a kinetic eqn in the presence of strong disorder → interplay disorder & nonlinearity
 → quantitative agreement with simulations
- Perspective: Finite number of modes \rightarrow Existence of upper bound for the energy (E_{max}) \rightarrow Entails the existence of Negative Temperature equilibrium states : T < 0

→ Special thanks to the students K. Baudin, A. Fusaro, N. Berti

- References for this work:
- → Fusaro, Garnier, Krupa, Millot, Picozzi PRL 122, 123902 (2019)
- → Garnier, Fusaro, Baudin, Michel, Krupa, Millot, Picozzi PRA 100, 053835 (2019)
- → Baudin, Fusaro, Krupa, Garnier, Rica, Millot, Picozzi PRL 125, 244101 (2020)
- → Baudin, Fusaro, Garnier, Krupa, Carusotto, Rica, Millot, Picozzi EPL134, 14001 (2021)