Complex-scaling method for the complex plasmonic resonances of particles with corners

Florian Monteghetti*

*Inria Saclay

This talk will present recent results on the existence and computation of complex plasmonic (CP) resonances $\varepsilon_n \in \mathbb{C}\setminus\mathbb{R}$ for planar particles whose boundaries are smooth except for a finite number of straight corners.

CP resonances are associated with strongly-oscillating fields that do not belong to H^1_{loc}, which prevents from directly using H^1-conforming 2D finite element (FE) approximations. However we show that CP resonances can be computed as eigenvalues of a modified plasmonic eigenvalue problem, obtained using a corner complex scaling, whose FE discretization yields a complex-symmetric linear generalized eigenvalue problem of the form $AU = \varepsilon BU$ [1]. Numerical results corroborate the study [2], which proved the existence of embedded plasmonic eigenvalues and discussed the construction of particles that exhibit CP resonances.
