A posteriori error estimates for singularly perturbed equations

Natalia Kopteva*

*University of Limerick

Solutions of singularly perturbed partial differential equations typically exhibit sharp boundary and interior layers, as well as corner singularities. To obtain reliable numerical approximations of such solutions in an efficient way, one may want to use meshes that are adapted to solution singularities using a posteriori error estimates.

In this talk, we shall discuss residual-type a posteriori error estimates singularly perturbed reaction-diffusion equations and singularly perturbed convection-diffusion equations.

The error constants in the considered estimates are independent of the diameters of mesh elements and of the small perturbation parameter. Some earlier results, such as [1,2], will be briefly reviewed, with the main focus on the recent preprints [3,4].


